17
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      Are you tired of sifting through news that doesn't interest you?
      Personalize your Karger newsletter today and get only the news that matters to you!

      Sign up

      • Record: found
      • Abstract: found
      • Article: found

      Inflammation in Dry Age-Related Macular Degeneration

      review-article
      Ophthalmologica
      S. Karger AG
      Age-related macular degeneration, inflammation, Vascular endothelial growth factor

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Purpose: To summarize the current information regarding the role of immune and inflammatory response in the pathogenesis of dry age-related macular degeneration (ARMD). Methods: A Pubmed search was conducted of the period January 1999 to 2005. Relevant information in the literature on the role of inflammation in early dry ARMD was reviewed. Results: Some important evidence for inflammation in early ARMD consists in the isolation of immunoglobulins, complement proteins, cytokines and activated microglia, in retinal pigment epithelium (RPE) cells and drusen. Pivotal mechanisms in early ARMD include the accumulation of debris and proteins along the RPE surface, followed by immune-complex deposition and complement activation. In contrast, the role of other plasma enzymes such as kallikrein-kinin-bradykinin, the Hageman factor, peptides and coagulation proteins in drusen formation and ARMD has yet to be determined. Conclusion: A clear role for inflammatory mediators and cells has been established in recent years. Future studies should elucidate further mechanisms in ARMD development.

          Related collections

          Most cited references30

          • Record: found
          • Abstract: found
          • Article: not found

          A role for local inflammation in the formation of drusen in the aging eye.

          The accumulation of numerous or confluent drusen, especially in the macula, is a significant risk factor for the development of age-related macular degeneration (AMD). Identifying the origin and molecular composition of these deposits, therefore, has been an important, yet elusive, objective for many decades. Recently, a more complete profile of the molecular composition of drusen has emerged. In this focused review, we discuss these new findings and their implications for the pathogenic events that give rise to drusen and AMD. Tissue specimens from one or both eyes of more than 400 human donors were examined by light, confocal or electron microscopy, in conjunction with antibodies to specific drusen-associated proteins, to help characterize the transitional events in drusen biogenesis. Quantification of messenger RNA from the retinal pigment epithelium (RPE)/choroid of donor eyes was used to determine if local ocular sources for drusen-associated molecules exist. The results indicate that cellular remnants and debris derived from degenerate RPE cells become sequestered between the RPE basal lamina and Bruch's membrane. We propose that this cellular debris constitutes a chronic inflammatory stimulus, and a potential "nucleation" site for drusen formation. The entrapped cellular debris then becomes the target of encapsulation by a variety of inflammatory mediators, some of which are contributed by the RPE and, perhaps, other local cell types; and some of which are extravasated from the choroidal circulation. The results support a role for local inflammation in drusen biogenesis, and suggest that it is analogous to the process that occurs in other age-related diseases, such as Alzheimer's disease and atherosclerosis, where accumulation of extracellular plaques and deposits elicits a local chronic inflammatory response that exacerbates the effects of primary pathogenic stimuli.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Inflammation and the degenerative diseases of aging.

            Chronic inflammation is associated with a broad spectrum of neurodegenerative diseases of aging. Included are such disorders as Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis, the Parkinson-dementia complex of Guam, all of the tauopathies, and age-related macular degeneration. Also included are such peripheral conditions as osteoarthritis, rheumatoid arthritis, atherosclerosis, and myocardial infarction. Inflammation is a two-edged sword. In acute situations, or at low levels, it deals with the abnormality and promotes healing. When chronically sustained at high levels, it can seriously damage viable host tissue. We describe this latter phenomenon as autotoxicity to distinguish it from autoimmunity. The latter involves a lymphocyte-directed attack against self proteins. Autotoxicity, on the other hand, is determined by the concentration and degree of activation of tissue-based monocytic phagocytes. Microglial cells are the brain representatives of the monocyte phagocytic system. Biochemically, the intensity of their activation is related to a spectrum of inflammatory mediators generated by a variety of local cells. The known spectrum includes, but is not limited to, prostaglandins, pentraxins, complement components, anaphylotoxins, cytokines, chemokines, proteases, protease inhibitors, adhesion molecules, and free radicals. This spectrum offers a huge variety of targets for new anti-inflammatory agents. It has been suggested, largely on the basis of transgenic mouse models, that stimulating inflammation rather than inhibiting it can be beneficial in such diseases as AD. If this were the case, administration of NSAIDs, or other anti-inflammatory drugs, would be expected to exacerbate conditions such as AD, PD, and atherosclerosis. However, epidemiological evidence overwhelmingly demonstrates that the reverse is true. This indicates that, at least in these diseases, the inflammation is harmful. So far, advantage has not been taken of opportunities indicated by these epidemiological studies to treat AD and PD with appropriate anti-inflammatory agents. Based on this evidence, classical NSAIDs are the most logical choice. Dosage, though, must be sufficient to combat the inflammation. Analysis of mRNA levels of inflammatory mediators indicates that the intensity of inflammation is considerably higher in AD hippocampus and in PD substantia nigra than in osteoarthritic joints. Thus, full therapeutic doses of NSAIDs, or combinations of anti-inflammatory agents, are needed to achieve the suggested neurological benefits.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The Alzheimer's A beta -peptide is deposited at sites of complement activation in pathologic deposits associated with aging and age-related macular degeneration.

              Age-related macular degeneration (AMD) is a leading cause of irreversible vision loss in older individuals worldwide. The disease is characterized by abnormal extracellular deposits, known as drusen, that accumulate along the basal surface of the retinal pigmented epithelium. Although drusen deposition is common in older individuals, large numbers of drusen and/or extensive areas of confluent drusen represent a significant risk factor for AMD. Widespread drusen deposition is associated with retinal pigmented epithelial cell dysfunction and degeneration of the photoreceptor cells of the neural retina. Recent studies have shown that drusen contain a variety of immunomodulatory molecules, suggesting that the process of drusen formation involves local inflammatory events, including activation of the complement cascade. Similar observations in Alzheimer's disease (AD) have lead to the hypothesis that chronic localized inflammation is an important element of AD pathogenesis, with significant neurodegenerative consequences. Accordingly, the amyloid beta (A beta) peptide, a major constituent of neuritic plaques in AD, has been implicated as a primary activator of complement in AD. Here we show that A beta is associated with a substructural vesicular component within drusen. A beta colocalizes with activated complement components in these "amyloid vesicles," thereby identifying them as potential primary sites of complement activation. Thus, A beta deposition could be an important component of the local inflammatory events that contribute to atrophy of the retinal pigmented epithelium, drusen biogenesis, and the pathogenesis of AMD.
                Bookmark

                Author and article information

                Journal
                OPH
                Ophthalmologica
                10.1159/issn.0030-3755
                Ophthalmologica
                S. Karger AG
                0030-3755
                1423-0267
                2007
                April 2007
                20 April 2007
                : 221
                : 3
                : 143-152
                Affiliations
                Retina Department, Ophthalmology Service, Hospital Regional São José, Instituto de Olhos Florianópolis/Centro Oftalmológico, Florianópolis, Brazil
                Article
                99293 Ophthalmologica 2007;221:143–152
                10.1159/000099293
                17440275
                64c50f9d-f828-4080-8940-d981ddaa6f32
                © 2007 S. Karger AG, Basel

                Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher. Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug. Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.

                History
                : 29 June 2006
                : 02 November 2006
                Page count
                Figures: 2, Tables: 1, References: 70, Pages: 10
                Categories
                Review

                Vision sciences,Ophthalmology & Optometry,Pathology
                Vascular endothelial growth factor,Age-related macular degeneration, inflammation

                Comments

                Comment on this article