1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Exosomes Transmit Viral Genetic Information and Immune Signals may cause Immunosuppression and Immune Tolerance in ALV-J Infected HD11 cells

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Avian leukosis virus (ALV) is oncogenic retrovirus that not only causes immunosuppression but also enhances the host's susceptibility to secondary infection. Exosomes play vital role in the signal transduction cascades that occur in response to viral infection. We want to explore the function of exosomes in the spread of ALV and the body's subsequent immunological response. RNA-sequencing and the isobaric tags for relative and absolute quantitation (iTRAQ) method were used to detect differentially expressed genes (DEGs) and differentially expressed proteins (DEPs) in exosomes secreted by macrophage cells in response to injection with ALV subgroup J (ALV-J). RNA-sequencing identified 513 DEGs in infected cells, with specific differential regulation in mRNA involved in tight junction signaling, TNF signaling, salmonella infection response, and immune response, among other important cellular processes. Differential regulation was observed in 843 lncRNAs, with particular enrichment in those lncRNA targets involved in Rap1 signaling, HTLV-I infection, tight junction signaling, and other signaling pathways. A total of 50 DEPs were identified in the infected cells by iTRAQ. The proteins enriched are involved in immune response, antigen processing, the formation of both MHC protein and myosin complexes, and transport. Combined analysis of the transcriptome and proteome revealed that there were 337 correlations between RNA and protein enrichment, five of which were significant. Pathways that were enriched on both the RNA and protein levels were involved in pathways in cancer, PI3K-Akt signaling pathway, Endocytosis, Epstein-Barr virus infection. These data show that exosomes are transmitters of intercellular signaling in response to viral infection. Exosomes can carry both viral nucleic acids and proteins, making it possible for exosomes to be involved in the viral infection of other cells and the transmission of immune signals between cells. Our sequencing results confirme previous studies on exosomes and further find exosomes may cause immunosuppression and immune tolerance.

          Related collections

          Most cited references32

          • Record: found
          • Abstract: found
          • Article: not found

          Proteomic profiling of exosomes: current perspectives.

          Exosomes are 40-100 nm membrane vesicles of endocytic origin secreted by most cell types in vitro. Recent studies have shown that exosomes are also found in vivo in body fluids such as blood, urine, amniotic fluid, malignant ascites, bronchoalveolar lavage fluid, synovial fluid, and breast milk. While the biological function of exosomes is still unclear, they can mediate communication between cells, facilitating processes such as antigen presentation and in trans signaling to neighboring cells. Exosome-like vesicles identified in Drosophila (referred to as argosomes) may be potential vehicles for the spread of morphogens in epithelia. The advent of current MS-based proteomic technologies has contributed significantly to our understanding of the molecular composition of exosomes. In addition to a common set of membrane and cytosolic proteins, it is becoming increasingly apparent that exosomes harbor distinct subsets of proteins that may be linked to cell-type associated functions. The secretion of exosomes by tumor cells and their implication in the transport and propagation of infectious cargo such as prions and retroviruses such as HIV suggest their participation in pathological situations. Interestingly, the recent observation that exosomes contain both mRNA and microRNA, which can be transferred to another cell, and be functional in that new environment, is an exciting new development in the unraveling exosome saga. The present review aims to summarize the physical properties that define exosomes as specific cell-type secreted membrane vesicles.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Proteomic analysis of dendritic cell-derived exosomes: a secreted subcellular compartment distinct from apoptotic vesicles.

            Dendritic cells constitutively secrete a population of small (50-90 nm diameter) Ag-presenting vesicles called exosomes. When sensitized with tumor antigenic peptides, dendritic cells produce exosomes, which stimulate anti-tumor immune responses and the rejection of established tumors in mice. Using a systematic proteomic approach, we establish the first extensive protein map of a particular exosome population; 21 new exosomal proteins were thus identified. Most proteins present in exosomes are related to endocytic compartments. New exosomal residents include cytosolic proteins most likely involved in exosome biogenesis and function, mainly cytoskeleton-related (cofilin, profilin I, and elongation factor 1alpha) and intracellular membrane transport and signaling factors (such as several annexins, rab 7 and 11, rap1B, and syntenin). Importantly, we also identified a novel category of exosomal proteins related to apoptosis: thioredoxin peroxidase II, Alix, 14-3-3, and galectin-3. These findings led us to analyze possible structural relationships between exosomes and microvesicles released by apoptotic cells. We show that although they both represent secreted populations of membrane vesicles relevant to immune responses, exosomes and apoptotic vesicles are biochemically and morphologically distinct. Therefore, in addition to cytokines, dendritic cells produce a specific population of membrane vesicles, exosomes, with unique molecular composition and strong immunostimulating properties.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Large-scale proteomics and phosphoproteomics of urinary exosomes.

              Normal human urine contains large numbers of exosomes, which are 40- to 100-nm vesicles that originate as the internal vesicles in multivesicular bodies from every renal epithelial cell type facing the urinary space. Here, we used LC-MS/MS to profile the proteome of human urinary exosomes. Overall, the analysis identified 1132 proteins unambiguously, including 177 that are represented on the Online Mendelian Inheritance in Man database of disease-related genes, suggesting that exosome analysis is a potential approach to discover urinary biomarkers. We extended the proteomic analysis to phosphoproteomic profiling using neutral loss scanning, and this yielded multiple novel phosphorylation sites, including serine-811 in the thiazide-sensitive Na-Cl co-transporter, NCC. To demonstrate the potential use of exosome analysis to identify a genetic renal disease, we carried out immunoblotting of exosomes from urine samples of patients with a clinical diagnosis of Bartter syndrome type I, showing an absence of the sodium-potassium-chloride co-transporter 2, NKCC2. The proteomic data are publicly accessible at http://dir.nhlbi.nih.gov/papers/lkem/exosome/.
                Bookmark

                Author and article information

                Journal
                Int J Biol Sci
                Int. J. Biol. Sci
                ijbs
                International Journal of Biological Sciences
                Ivyspring International Publisher (Sydney )
                1449-2288
                2020
                22 January 2020
                : 16
                : 6
                : 904-920
                Affiliations
                [1 ]Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Sichuan, Chengdu, China
                [2 ]Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Foshan University, Foshan, 528231, Guangdong, China
                Author notes
                ✉ Corresponding authors: Qing Zhu: zhuqingsicau@ 123456163.com ; Hua Li: okhuali@ 123456fosu.edu.cn

                *: These authors contributed equally to the article.

                Competing Interests: The authors have declared that no competing interest exists.

                Article
                ijbsv16p0904
                10.7150/ijbs.35839
                7053331
                64d1e981-d7b6-4fbc-9515-e3662665063b
                © The author(s)

                This is an open access article distributed under the terms of the Creative Commons Attribution License ( https://creativecommons.org/licenses/by/4.0/). See http://ivyspring.com/terms for full terms and conditions.

                History
                : 18 April 2019
                : 6 December 2019
                Categories
                Research Paper

                Life sciences
                macrophage cells,retrovirus,exosome,proteome,transcriptome,immune response
                Life sciences
                macrophage cells, retrovirus, exosome, proteome, transcriptome, immune response

                Comments

                Comment on this article