Chronic infections represent a continuous battle between the host's immune system and pathogen replication. Many protozoan parasites have evolved a cyst lifecycle stage that provides it with increased protection from environmental degradation as well as endogenous host mechanisms of attack. In the case of Toxoplasma gondii, these cysts are predominantly found in the immune protected brain making clearance of the parasite more difficult and resulting in a lifelong infection. Currently, little is known about the nature of the immune response stimulated by the presence of these cysts or how they are able to propagate. Here we establish a novel chitinase-dependent mechanism of cyst control in the infected brain. Despite a dominant Th1 immune response during Toxoplasma infection there exists a population of alternatively activated macrophages (AAMØ) in the infected CNS. These cells are capable of cyst lysis via the production of AMCase as revealed by live imaging, and this chitinase is necessary for protective immunity within the CNS. These data demonstrate chitinase activity in the brain in response to a protozoan pathogen and provide a novel mechanism to facilitate cyst clearance during chronic infections.
Described here is a novel mechanism of protozoan cyst clearance in the CNS during chronic infection. These data show the presence of a population of alternatively activated macrophages in the brain that secrete the active chitinase, AMCase, in response to chitin in the cyst wall. Using both chemical and genetic inhibition in vitro, it is revealed that this enzyme is required for efficient degradation and destruction of the cyst. The necessity for AMCase is demonstrated in vivo, as the absence of the enzyme resulted in a significant increase in cyst burden and decrease in survival during chronic infection. Together, these data identify an important mechanism of parasite control and cyst clearance in the CNS. Currently, no therapies exist that lead to the total clearance of this parasite from the brain. Therefore, developing an understanding of the natural mechanisms of cyst clearance has the potential to lead to new and effective therapies for this and other chronic infections.