Blog
About

2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Relationships between lake chemistry and calcium and trace metal concentrations of aquatic invertebrates eaten by breeding insectivorous waterfowl.

      Read this article at

      ScienceOpenPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Ca, P, Al, and trace metal (Cu, Ni, Zn, Cd, and Pb) concentrations were measured in several aquatic invertebrate taxa used as food by breeding insectivorous waterfowl, sampled from three sites in eastern Canada with widely varying water chemistry. Ca concentrations were highest in molluscs (snails and clams), averaging 200-300 mg g(-1) (shells included). Aquatic insects of varying sizes, life stages and habits (caddisfly larvae, dragonfly larvae, adult backswimmers, waterstriders, and whirligig beetles) had much lower mean Ca concentrations, ranging from about 0.6 mg g(-1) (beetles) to 1.8 mg g(-1) (caddisflies). Invertebrate-Ca concentrations decreased with increasing body mass for several taxa, with smaller and larger individuals providing similar absolute amounts of Ca. Ca concentrations in most aquatic insects (but not molluscs) were reduced under acidic, low Ca, high Al, low dissolved organic carbon (DOC) and/or low total phosphorus (TP) conditions. In stepwise multiple regressions, pH was consistently the main factor explaining variability in invertebrate-Ca, after controlling for the negative relationship between invertebrate-Ca and body mass for some taxa. Molluscs were absent from lakes below pH 5.3. In general, concentrations of P and metals in invertebrate taxa were not significantly correlated with lake pH. Levels of Al, Cd, or Pb were not sufficiently high to be considered toxic to potential consumers of these organisms. For waterfowl and other birds breeding in acid-stressed habitats and relying on aquatic invertebrates as a source of food, a reduced availability of dietary Ca is more likely than an increased exposure to toxic metals to negatively affect reproductive success, especially when other adverse effects of acidification (lower diversity of prey) are considered.

          Related collections

          Author and article information

          Journal
          Environ. Pollut.
          Environmental pollution (Barking, Essex : 1987)
          0269-7491
          0269-7491
          1997
          : 96
          : 2
          Affiliations
          [1 ] Canadian Wildlife Service, National Wildlife Research Centre, 100 Gamelin Blvd, Hull, Québec, K1A 0H3, Canada.
          S0269-7491(97)00032-8
          15093423

          Comments

          Comment on this article