26
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Effect of Moderate-Intensity Exercise Versus Activities of Daily Living on 24-Hour Blood Glucose Homeostasis in Male Patients With Type 2 Diabetes

      research-article
      , MSC 1 , , MSC 1 , , MD, PHD 2 , , MD, PHD 3 , , MD, PHD 4 , , PHD 1
      Diabetes Care
      American Diabetes Association

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          OBJECTIVE

          To investigate the impact of activities of daily living (ADL) versus moderate-intensity endurance-type exercise on 24-h glycemic control in patients with type 2 diabetes.

          RESEARCH DESIGN AND METHODS

          Twenty males with type 2 diabetes participated in a randomized crossover study consisting of three experimental periods of 3 days each. Subjects were studied under sedentary control conditions, and under conditions in which prolonged sedentary time was reduced either by three 15-min bouts of ADL (postmeal strolling, ∼3 METs) or by a single 45-min bout of moderate-intensity endurance-type exercise (∼6 METs). Blood glucose concentrations were assessed by continuous glucose monitoring, and plasma insulin concentrations were determined in frequently sampled venous blood samples.

          RESULTS

          Hyperglycemia (glucose >10 mmol/L) was experienced for 6 h 51 min ±1 h 4 min per day during the sedentary control condition and was significantly reduced by exercise (4 h 47 min ± 1 h 2 min; P < 0.001), but not by ADL (6 h 2 min ± 1 h 16 min; P = 0.67). The cumulative glucose incremental areas under the curve (AUCs) of breakfast, lunch, and dinner were, respectively, 35 ± 5% ( P < 0.001) and 17 ± 6% ( P < 0.05) lower during the exercise and ADL conditions compared with the sedentary condition. The insulin incremental AUCs were, respectively, 33 ± 4% ( P < 0.001) and 17 ± 5% ( P < 0.05) lower during the exercise and ADL conditions compared with the sedentary condition.

          CONCLUSIONS

          When matched for total duration, moderate-intensity endurance-type exercise represents a more effective strategy to improve daily blood glucose homeostasis than repeated bouts of ADL. Nevertheless, the introduction of repeated bouts of ADL during prolonged sedentary behavior forms a valuable strategy to improve postprandial glucose handling in patients with type 2 diabetes.

          Related collections

          Most cited references22

          • Record: found
          • Abstract: found
          • Article: not found

          Breaks in sedentary time: beneficial associations with metabolic risk.

          Total sedentary (absence of whole-body movement) time is associated with obesity, abnormal glucose metabolism, and the metabolic syndrome. In addition to the effects of total sedentary time, the manner in which it is accumulated may also be important. We examined the association of breaks in objectively measured sedentary time with biological markers of metabolic risk. Participants (n = 168, mean age 53.4 years) for this cross-sectional study were recruited from the 2004-2005 Australian Diabetes, Obesity and Lifestyle study. Sedentary time was measured by an accelerometer (counts/minute(-1) or = 100) was considered a break. Fasting plasma glucose, 2-h plasma glucose, serum triglycerides, HDL cholesterol, weight, height, waist circumference, and resting blood pressure were measured. MatLab was used to derive the breaks variable; SPSS was used for the statistical analysis. Independent of total sedentary time and moderate-to-vigorous intensity activity time, increased breaks in sedentary time were beneficially associated with waist circumference (standardized beta = -0.16, 95% CI -0.31 to -0.02, P = 0.026), BMI (beta = -0.19, -0.35 to -0.02, P = 0.026), triglycerides (beta = -0.18, -0.34 to -0.02, P = 0.029), and 2-h plasma glucose (beta = -0.18, -0.34 to -0.02, P = 0.025). This study provides evidence of the importance of avoiding prolonged uninterrupted periods of sedentary (primarily sitting) time. These findings suggest new public health recommendations regarding breaking up sedentary time that are complementary to those for physical activity.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Exercise and Type 2 Diabetes

            Although physical activity (PA) is a key element in the prevention and management of type 2 diabetes, many with this chronic disease do not become or remain regularly active. High-quality studies establishing the importance of exercise and fitness in diabetes were lacking until recently, but it is now well established that participation in regular PA improves blood glucose control and can prevent or delay type 2 diabetes, along with positively affecting lipids, blood pressure, cardiovascular events, mortality, and quality of life. Structured interventions combining PA and modest weight loss have been shown to lower type 2 diabetes risk by up to 58% in high-risk populations. Most benefits of PA on diabetes management are realized through acute and chronic improvements in insulin action, accomplished with both aerobic and resistance training. The benefits of physical training are discussed, along with recommendations for varying activities, PA-associated blood glucose management, diabetes prevention, gestational diabetes mellitus, and safe and effective practices for PA with diabetes-related complications.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Sitting time and all-cause mortality risk in 222 497 Australian adults.

              Prolonged sitting is considered detrimental to health, but evidence regarding the independent relationship of total sitting time with all-cause mortality is limited. This study aimed to determine the independent relationship of sitting time with all-cause mortality. We linked prospective questionnaire data from 222 497 individuals 45 years or older from the 45 and Up Study to mortality data from the New South Wales Registry of Births, Deaths, and Marriages (Australia) from February 1, 2006, through December 31, 2010. Cox proportional hazards models examined all-cause mortality in relation to sitting time, adjusting for potential confounders that included sex, age, education, urban/rural residence, physical activity, body mass index, smoking status, self-rated health, and disability. During 621 695 person-years of follow-up (mean follow-up, 2.8 years), 5405 deaths were registered. All-cause mortality hazard ratios were 1.02 (95% CI, 0.95-1.09), 1.15 (1.06-1.25), and 1.40 (1.27-1.55) for 4 to less than 8, 8 to less than 11, and 11 or more h/d of sitting, respectively, compared with less than 4 h/d, adjusting for physical activity and other confounders. The population-attributable fraction for sitting was 6.9%. The association between sitting and all-cause mortality appeared consistent across the sexes, age groups, body mass index categories, and physical activity levels and across healthy participants compared with participants with preexisting cardiovascular disease or diabetes mellitus. Prolonged sitting is a risk factor for all-cause mortality, independent of physical activity. Public health programs should focus on reducing sitting time in addition to increasing physical activity levels.
                Bookmark

                Author and article information

                Journal
                Diabetes Care
                Diabetes Care
                diacare
                dcare
                Diabetes Care
                Diabetes Care
                American Diabetes Association
                0149-5992
                1935-5548
                November 2013
                15 October 2013
                : 36
                : 11
                : 3448-3453
                Affiliations
                [1] 1Department of Human Movement Sciences, NUTRIM School for Nutrition, Toxicology, and Metabolism, Maastricht University Medical Centre+, Maastricht, the Netherlands
                [2] 2Department of Public and Occupational Health, EMGO Institute for Health and Care Research, VU University Medical Center, Amsterdam, the Netherlands
                [3] 3Department of Internal Medicine, CARIM Cardiovascular Research Institute Maastricht, Maastricht University Medical Centre+, Maastricht, the Netherlands
                [4] 4Departments of Epidemiology and Surgery, CAPHRI School for Public Health and Primary Care, Maastricht University Medical Centre+, Maastricht, the Netherlands
                Author notes
                Corresponding author: Luc J.C. van Loon, l.vanloon@ 123456maastrichtuniversity.nl .
                Article
                2620
                10.2337/dc12-2620
                3816888
                24041682
                64f02b30-c9f4-4bc6-bf6c-7de67db6e563
                © 2013 by the American Diabetes Association.

                Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered. See http://creativecommons.org/licenses/by-nc-nd/3.0/ for details.

                History
                : 17 December 2012
                : 3 June 2013
                Page count
                Pages: 6
                Categories
                Original Research
                Clinical Care/Education/Nutrition/Psychosocial Research

                Endocrinology & Diabetes
                Endocrinology & Diabetes

                Comments

                Comment on this article