16
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      InterEvDock: a docking server to predict the structure of protein–protein interactions using evolutionary information

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The structural modeling of protein–protein interactions is key in understanding how cell machineries cross-talk with each other. Molecular docking simulations provide efficient means to explore how two unbound protein structures interact. InterEvDock is a server for protein docking based on a free rigid-body docking strategy. A systematic rigid-body docking search is performed using the FRODOCK program and the resulting models are re-scored with InterEvScore and SOAP-PP statistical potentials. The InterEvScore potential was specifically designed to integrate co-evolutionary information in the docking process. InterEvDock server is thus particularly well suited in case homologous sequences are available for both binding partners. The server returns 10 structures of the most likely consensus models together with 10 predicted residues most likely involved in the interface. In 91% of all complexes tested in the benchmark, at least one residue out of the 10 predicted is involved in the interface, providing useful guidelines for mutagenesis. InterEvDock is able to identify a correct model among the top10 models for 49% of the rigid-body cases with evolutionary information, making it a unique and efficient tool to explore structural interactomes under an evolutionary perspective. The InterEvDock web interface is available at http://bioserv.rpbs.univ-paris-diderot.fr/services/InterEvDock/.

          Related collections

          Most cited references21

          • Record: found
          • Abstract: found
          • Article: not found

          ClusPro: a fully automated algorithm for protein-protein docking.

          ClusPro (http://nrc.bu.edu/cluster) represents the first fully automated, web-based program for the computational docking of protein structures. Users may upload the coordinate files of two protein structures through ClusPro's web interface, or enter the PDB codes of the respective structures, which ClusPro will then download from the PDB server (http://www.rcsb.org/pdb/). The docking algorithms evaluate billions of putative complexes, retaining a preset number with favorable surface complementarities. A filtering method is then applied to this set of structures, selecting those with good electrostatic and desolvation free energies for further clustering. The program output is a short list of putative complexes ranked according to their clustering properties, which is automatically sent back to the user via email.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            FireDock: a web server for fast interaction refinement in molecular docking†

            Structural details of protein–protein interactions are invaluable for understanding and deciphering biological mechanisms. Computational docking methods aim to predict the structure of a protein–protein complex given the structures of its single components. Protein flexibility and the absence of robust scoring functions pose a great challenge in the docking field. Due to these difficulties most of the docking methods involve a two-tier approach: coarse global search for feasible orientations that treats proteins as rigid bodies, followed by an accurate refinement stage that aims to introduce flexibility into the process. The FireDock web server, presented here, is the first web server for flexible refinement and scoring of protein–protein docking solutions. It includes optimization of side-chain conformations and rigid-body orientation and allows a high-throughput refinement. The server provides a user-friendly interface and a 3D visualization of the results. A docking protocol consisting of a global search by PatchDock and a refinement by FireDock was extensively tested. The protocol was successful in refining and scoring docking solution candidates for cases taken from docking benchmarks. We provide an option for using this protocol by automatic redirection of PatchDock candidate solutions to the FireDock web server for refinement. The FireDock web server is available at http://bioinfo3d.cs.tau.ac.il/FireDock/.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              ConSurf: identification of functional regions in proteins by surface-mapping of phylogenetic information.

              We recently developed algorithmic tools for the identification of functionally important regions in proteins of known three dimensional structure by estimating the degree of conservation of the amino-acid sites among their close sequence homologues. Projecting the conservation grades onto the molecular surface of these proteins reveals patches of highly conserved (or occasionally highly variable) residues that are often of important biological function. We present a new web server, ConSurf, which automates these algorithmic tools. ConSurf may be used for high-throughput characterization of functional regions in proteins. The ConSurf web server is available at:http://consurf.tau.ac.il. A set of examples is available at http://consurf.tau.ac.il under 'GALLERY'.
                Bookmark

                Author and article information

                Journal
                Nucleic Acids Res
                Nucleic Acids Res
                nar
                nar
                Nucleic Acids Research
                Oxford University Press
                0305-1048
                1362-4962
                08 July 2016
                29 April 2016
                29 April 2016
                : 44
                : Web Server issue
                : W542-W549
                Affiliations
                [1 ]Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette cedex, France
                [2 ]INSERM UMR-S 973 Molécules Thérapeutiques in Silico, INSERM UMR-S 973, RPBS, Université Paris Diderot, 35 rue H. Brion, case 7113, Sorbone Paris Cité, 75205 Paris cedex 13, France
                Author notes
                [* ]To whom correspondence should be addressed. Tel: +33 1 69 08 67 17; Fax: +33 1 69 08 47 12; Email: guerois@ 123456cea.fr
                Correspondence may also be addressed to Pierre Tufféry. Tel: +33 1 57 27 83 74; Fax: +33 1 57 27 83 72; Email: pierre.tuffery@ 123456univ-paris-diderot.fr
                Article
                10.1093/nar/gkw340
                4987904
                27131368
                64f6d3d8-50ca-45c4-b9cb-fefd46b5fd2c
                © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@ 123456oup.com

                History
                : 17 April 2016
                : 07 April 2016
                : 31 January 2016
                Page count
                Pages: 8
                Categories
                Web Server issue
                Custom metadata
                08 July 2016

                Genetics
                Genetics

                Comments

                Comment on this article