25
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Role of Ccr4-Not complex in heterochromatin formation at meiotic genes and subtelomeres in fission yeast

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Heterochromatin is essential for chromosome segregation, gene silencing and genome integrity. The fission yeast Schizosaccharomyces pombe contains heterochromatin at centromeres, subtelomeres, and mating type genes, as well as at small islands of meiotic genes dispersed across the genome. This heterochromatin is generated by partially redundant mechanisms, including the production of small interfering RNAs (siRNAs) that are incorporated into the RITS protein complex (RNAi-Induced Transcriptional Silencing). The assembly of heterochromatin islands requires the function of the RNA-binding protein Mmi1, which recruits RITS to its mRNA targets and to heterochromatin islands. In addition, Mmi1 directs its targets to an exosome-dependent RNA elimination pathway.

          Results

          Ccr4-Not is a conserved multiprotein complex that regulates gene expression at multiple levels, including RNA degradation and translation. We show here that Ccr4-Not is recruited by Mmi1 to its RNA targets. Surprisingly, Ccr4 and Caf1 (the mRNA deadenylase catalytic subunits of the Ccr4-Not complex) are not necessary for the degradation or translation of Mmi1 RNA targets, but are essential for heterochromatin integrity at Mmi1-dependent islands and, independently of Mmi1, at subtelomeric regions. Both roles require the deadenylase activity of Ccr4 and the Mot2/Not4 protein, a ubiquitin ligase that is also part of the complex. Genetic evidence shows that Ccr4-mediated silencing is essential for normal cell growth, indicating that this novel regulation is physiologically relevant. Moreover, Ccr4 interacts with components of the RITS complex in a Mmi1-independent manner.

          Conclusions

          Taken together, our results demonstrate that the Ccr4-Not complex is required for heterochromatin integrity in both Mmi1-dependent and Mmi1-independent pathways.

          Electronic supplementary material

          The online version of this article (doi:10.1186/s13072-015-0018-4) contains supplementary material, which is available to authorized users.

          Related collections

          Most cited references66

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          In silico prediction of protein-protein interactions in human macrophages

          Background: Protein-protein interaction (PPI) network analyses are highly valuable in deciphering and understanding the intricate organisation of cellular functions. Nevertheless, the majority of available protein-protein interaction networks are context-less, i.e. without any reference to the spatial, temporal or physiological conditions in which the interactions may occur. In this work, we are proposing a protocol to infer the most likely protein-protein interaction (PPI) network in human macrophages. Results: We integrated the PPI dataset from the Agile Protein Interaction DataAnalyzer (APID) with different meta-data to infer a contextualized macrophage-specific interactome using a combination of statistical methods. The obtained interactome is enriched in experimentally verified interactions and in proteins involved in macrophage-related biological processes (i.e. immune response activation, regulation of apoptosis). As a case study, we used the contextualized interactome to highlight the cellular processes induced upon Mycobacterium tuberculosis infection. Conclusion: Our work confirms that contextualizing interactomes improves the biological significance of bioinformatic analyses. More specifically, studying such inferred network rather than focusing at the gene expression level only, is informative on the processes involved in the host response. Indeed, important immune features such as apoptosis are solely highlighted when the spotlight is on the protein interaction level.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Basic methods for fission yeast.

            The fission yeast Schizosaccharomyces pombe is a popular model system, and has been particularly influential in studies of the cell cycle and chromosome dynamics. Despite its differences from Saccharomyces cerevisiae, the tools and methods for fission yeast are conceptually similar to those used in budding yeast. Here, we present basic methods sufficient for a beginner in this system to carry out most required manipulations for genetic analysis or molecular biology. Copyright 2006 John Wiley & Sons, Ltd.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Establishment and maintenance of a heterochromatin domain.

              The higher-order assembly of chromatin imposes structural organization on the genetic information of eukaryotes and is thought to be largely determined by posttranslational modification of histone tails. Here, we study a 20-kilobase silent domain at the mating-type region of fission yeast as a model for heterochromatin formation. We find that, although histone H3 methylated at lysine 9 (H3 Lys9) directly recruits heterochromatin protein Swi6/HP1, the critical determinant for H3 Lys9 methylation to spread in cis and to be inherited through mitosis and meiosis is Swi6 itself. We demonstrate that a centromere-homologous repeat (cenH) present at the silent mating-type region is sufficient for heterochromatin formation at an ectopic site, and that its repressive capacity is mediated by components of the RNA interference (RNAi) machinery. Moreover, cenH and the RNAi machinery cooperate to nucleate heterochromatin assembly at the endogenous mat locus but are dispensable for its subsequent inheritance. This work defines sequential requirements for the initiation and propagation of regional heterochromatic domains.
                Bookmark

                Author and article information

                Contributors
                ccotobal@gmail.com
                m.rodriguezlopez@ucl.ac.uk
                cdsd3@cam.ac.uk
                ah649@cam.ac.uk
                ymst@nibb.ac.jp
                yamamoto@nibb.ac.jp
                j.bahler@ucl.ac.uk
                jm593@cam.ac.uk
                Journal
                Epigenetics Chromatin
                Epigenetics Chromatin
                Epigenetics & Chromatin
                BioMed Central (London )
                1756-8935
                15 August 2015
                15 August 2015
                2015
                : 8
                : 28
                Affiliations
                [ ]Department of Biochemistry, University of Cambridge, Cambridge, UK
                [ ]Department of Genetics, Evolution and Environment, UCL Cancer Institute, University College London, London, UK
                [ ]Laboratory of Cell Responses, National Institute for Basic Biology, Okazaki, Japan
                Article
                18
                10.1186/s13072-015-0018-4
                4536793
                26279681
                64f997d7-81df-46db-839a-76717b39225b
                © Cotobal et al. 2015

                Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 6 July 2015
                : 22 July 2015
                Categories
                Research
                Custom metadata
                © The Author(s) 2015

                Genetics
                ccr4-not complex,genome-wide approaches,rip-chip,chip-seq,heterochromatin,s. pombe
                Genetics
                ccr4-not complex, genome-wide approaches, rip-chip, chip-seq, heterochromatin, s. pombe

                Comments

                Comment on this article