40
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Cortical Acto-Myosin Network: From Diffusion Barrier to Functional Gateway in the Transport of Neurosecretory Vesicles to the Plasma Membrane

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Dysregulation of regulated exocytosis is linked to an array of pathological conditions, including neurodegenerative disorders, asthma, and diabetes. Understanding the molecular mechanisms underpinning neuroexocytosis including the processes that allow neurosecretory vesicles to access and fuse with the plasma membrane and to recycle post-fusion, is therefore critical to the design of future therapeutic drugs that will efficiently tackle these diseases. Despite considerable efforts to determine the principles of vesicular fusion, the mechanisms controlling the approach of vesicles to the plasma membrane in order to undergo tethering, docking, priming, and fusion remain poorly understood. All these steps involve the cortical actin network, a dense mesh of actin filaments localized beneath the plasma membrane. Recent work overturned the long-held belief that the cortical actin network only plays a passive constraining role in neuroexocytosis functioning as a physical barrier that partly breaks down upon entry of Ca 2+ to allow secretory vesicles to reach the plasma membrane. A multitude of new roles for the cortical actin network in regulated exocytosis have now emerged and point to highly dynamic novel functions of key myosin molecular motors. Myosins are not only believed to help bring about dynamic changes in the actin cytoskeleton, tethering and guiding vesicles to their fusion sites, but they also regulate the size and duration of the fusion pore, thereby directly contributing to the release of neurotransmitters and hormones. Here we discuss the functions of the cortical actin network, myosins, and their effectors in controlling the processes that lead to tethering, directed transport, docking, and fusion of exocytotic vesicles in regulated exocytosis.

          Related collections

          Most cited references152

          • Record: found
          • Abstract: found
          • Article: not found

          Non-muscle myosin II takes centre stage in cell adhesion and migration.

          Non-muscle myosin II (NM II) is an actin-binding protein that has actin cross-linking and contractile properties and is regulated by the phosphorylation of its light and heavy chains. The three mammalian NM II isoforms have both overlapping and unique properties. Owing to its position downstream of convergent signalling pathways, NM II is central in the control of cell adhesion, cell migration and tissue architecture. Recent insight into the role of NM II in these processes has been gained from loss-of-function and mutant approaches, methods that quantitatively measure actin and adhesion dynamics and the discovery of NM II mutations that cause monogenic diseases.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Actin-based plasticity in dendritic spines.

            I A Matus (2000)
            The central nervous system functions primarily to convert patterns of activity in sensory receptors into patterns of muscle activity that constitute appropriate behavior. At the anatomical level this requires two complementary processes: a set of genetically encoded rules for building the basic network of connections, and a mechanism for subsequently fine tuning these connections on the basis of experience. Identifying the locus and mechanism of these structural changes has long been among neurobiology's major objectives. Evidence has accumulated implicating a particular class of contacts, excitatory synapses made onto dendritic spines, as the sites where connective plasticity occurs. New developments in light microscopy allow changes in spine morphology to be directly visualized in living neurons and suggest that a common mechanism, based on dynamic actin filaments, is involved in both the formation of dendritic spines during development and their structural plasticity at mature synapses.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A millennial myosin census.

              The past decade has seen a remarkable explosion in our knowledge of the size and diversity of the myosin superfamily. Since these actin-based motors are candidates to provide the molecular basis for many cellular movements, it is essential that motility researchers be aware of the complete set of myosins in a given organism. The availability of cDNA and/or draft genomic sequences from humans, Drosophila melanogaster, Caenorhabditis elegans, Arabidopsis thaliana, Saccharomyces cerevisiae, Schizosaccharomyces pombe, and Dictyostelium discoideum has allowed us to tentatively define and compare the sets of myosin genes in these organisms. This analysis has also led to the identification of several putative myosin genes that may be of general interest. In humans, for example, we find a total of 40 known or predicted myosin genes including two new myosins-I, three new class II (conventional) myosins, a second member of the class III/ninaC myosins, a gene similar to the class XV deafness myosin, and a novel myosin sharing at most 33% identity with other members of the superfamily. These myosins are in addition to the recently discovered class XVI myosin with N-terminal ankyrin repeats and two human genes with similarity to the class XVIII PDZ-myosin from mouse. We briefly describe these newly recognized myosins and extend our previous phylogenetic analysis of the myosin superfamily to include a comparison of the complete or nearly complete inventories of myosin genes from several experimentally important organisms.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Endocrinol (Lausanne)
                Front Endocrinol (Lausanne)
                Front. Endocrinol.
                Frontiers in Endocrinology
                Frontiers Media S.A.
                1664-2392
                21 October 2013
                2013
                : 4
                : 153
                Affiliations
                [1] 1Queensland Brain Institute, The University of Queensland, St Lucia Campus , Brisbane, QLD, Australia
                Author notes

                Edited by: Stephane Gasman, Centre National de la Recherche Scientifique, France

                Reviewed by: Nicolas Vitale, Centre National de la Recherche Scientifique, France; Jose-Maria Trifaro, University of Ottawa, Canada

                *Correspondence: Frederic A. Meunier, Queensland Brain Institute, The University of Queensland, St Lucia Campus, QBI Building #79, St Lucia, QLD 4072, Australia e-mail: f.meunier@ 123456uq.edu.au

                This article was submitted to Neuroendocrine Science, a section of the journal Frontiers in Endocrinology.

                Article
                10.3389/fendo.2013.00153
                3800816
                24155741
                651dca2b-b3b1-4465-95e9-57ceb9c84086
                Copyright © 2013 Papadopulos, Tomatis, Kasula and Meunier.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 15 August 2013
                : 05 October 2013
                Page count
                Figures: 3, Tables: 0, Equations: 0, References: 157, Pages: 11, Words: 9845
                Categories
                Endocrinology
                Review Article

                Endocrinology & Diabetes
                cortical actin,myosin,regulated exocytosis,cdc42,phosphoinositides,secretory vesicles

                Comments

                Comment on this article