13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Rosiglitazone accelerates wound healing by improving endothelial precursor cell function and angiogenesis in db/db mice

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background & Aims

          Endothelial precursor cell (EPC) dysfunction is one of the risk factors for diabetes mellitus (DM) which results in delayed wound healing. Rosiglitazone (RSG) is a frequently prescribed oral glucose-lowering drug. Previous studies have shown the positive effects of RSG on ameliorating EPC dysfunction in diabetic patients. Interestingly, knowledge about RSG with regard to the wound healing process caused by DM is scarce. Therefore, in this study, we investigated the possible actions of RSG on wound healing and the related mechanisms involved in db/db diabetic mice.

          Methods

          Db/db mice with spontaneous glucose metabolic disorder were used as a type 2 DM model. RSG (20 mg/kg/d, i.g.,) was administered for 4 weeks before wound creation and bone marrow derived EPC (BM-EPC) isolation. Wound closure was assessed by wound area and CD31 staining. Tubule formation and migration assays were used to judge the function of the BM-EPCs. The level of vascular endothelial growth factor (VEGF), stromal cell derived factor-1α (SDF-1α) and insulin signaling was determined by ELISA. Cell viability of the BM-EPCs was measured by CCK-8 assay.

          Results

          RSG significantly accelerated wound healing and improved angiogenesis in db/db mice. Bioactivities of tube formation and migration were decreased in db/db mice but were elevated by RSG. Level of both VEGF and SDF-1α was increased by RSG in the BM-EPCs of db/db mice. Insulin signaling was elevated by RSG reflected in the phosphorylated-to-total AKT in the BM-EPCs. In vitro, RSG improved impaired cell viability and tube formation of BM-EPCs induced by high glucose, but this was prevented by the VEGF inhibitor avastin.

          Conclusion

          Our data demonstrates that RSG has benefits for wound healing and angiogenesis in diabetic mice, and was partially associated with improvement of EPC function through activation of VEGF and stimulation of SDF-1α in db/db mice.

          Related collections

          Most cited references36

          • Record: found
          • Abstract: found
          • Article: not found

          Endothelial progenitor cells control the angiogenic switch in mouse lung metastasis.

          Angiogenesis-mediated progression of micrometastasis to lethal macrometastasis is the major cause of death in cancer patients. Here, using mouse models of pulmonary metastasis, we identify bone marrow (BM)-derived endothelial progenitor cells (EPCs) as critical regulators of this angiogenic switch. We show that tumors induce expression of the transcription factor Id1 in the EPCs and that suppression of Id1 after metastatic colonization blocked EPC mobilization, caused angiogenesis inhibition, impaired pulmonary macrometastases, and increased survival of tumor-bearing animals. These findings establish the role of EPCs in metastatic progression in preclinical models and suggest that selective targeting of EPCs may merit investigation as a therapy for cancer patients with lung metastases.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            C-reactive protein attenuates endothelial progenitor cell survival, differentiation, and function: further evidence of a mechanistic link between C-reactive protein and cardiovascular disease.

            Myocardial ischemia provides a potent stimulus to angiogenesis, and the mobilization and differentiation of endothelial progenitor cells (EPCs) has been shown to be important in this process. An elevated level of C-reactive protein (CRP) has emerged as one of the most powerful predictors of cardiovascular disease. However, the impact of CRP on EPC biology is unknown. EPCs were isolated from the peripheral venous blood of healthy male volunteers. Cells were cultured in endothelial cell basal medium-2 in the absence and presence of CRP (5 to 20 microg/mL), rosiglitazone (1 micromol/L), and/or vascular endothelial growth factor. EPC differentiation, survival, and function were assayed. CRP at concentrations > or =15 microg/mL significantly reduced EPC cell number, inhibited the expression of the endothelial cell-specific markers Tie-2, EC-lectin, and VE-cadherin, significantly increased EPC apoptosis, and impaired EPC-induced angiogenesis. EPC-induced angiogenesis was dependent on the presence of nitric oxide, and CRP treatment caused a decrease in endothelial nitric oxide synthase mRNA expression by EPCs. However, all of these detrimental CRP-mediated effects on EPCs were attenuated by pretreatment with rosiglitazone, a peroxisome proliferator-activated receptor-gamma (PPARgamma) agonist. Human recombinant CRP, at concentrations known to predict adverse vascular outcomes, directly inhibits EPC differentiation, survival, and function, key components of angiogenesis and the response to chronic ischemia. This occurs in part via an effect of CRP to reduce EPC eNOS expression. The PPARgamma agonist rosiglitazone inhibits the negative effects of CRP on EPC biology. The ability of CRP to inhibit EPC differentiation and survival may represent an important mechanism that further links inflammation to cardiovascular disease.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Metformin improves the angiogenic functions of endothelial progenitor cells via activating AMPK/eNOS pathway in diabetic mice

              Background Endothelial dysfunction has been suggested as a possible causal link between hyperglycemia and microvascular complications in diabetes mellitus. The effect of metformin on endothelial progenitor cells (EPCs) is still unclear. This study was designed to test the hypothesis that metformin could accelerate wound healing by improving the impaired EPC functions in streptozotocin-induced diabetic mice. Methods Streptozotocin (STZ, 60 mg/kg/d × 5 d, i.p.) was injected to induce type 1 diabetes in male C57BL/6 mice. Mice were treated with metformin (250 mg/kg/d, i.g.) for consecutive 14 days. Wound closure was evaluated by wound area and number of CD31 stained capillaries. Functions of bone marrow-endothelial progenitor cells (BM-EPCs) were assessed by tube formation and migration assays, and expression of AMP-activated protein kinase (AMPK) and endothelial nitric oxide synthase (eNOS) was determined by western blot analysis. Results Metformin accelerated wound closure and stimulated angiogenesis in diabetic mice. The number of circulating EPCs was increased significantly in metformin treated diabetic mice. Abilities of tube formation and migration of BM-EPCs were impaired in diabetic mice, which were improved by metformin. Expression of both phosphorylated-AMPK and phosphorylated-eNOS was significantly increased, and nitric oxide (NO) production was enhanced by metformin in BM-EPCs of diabetic mice. In vitro, metformin improved impaired BM-EPC functions, and increased phosphorylated-eNOS expression and NO production in cultured BM-EPCs caused by high glucose, which was prevented by the AMPK inhibitor compound C. Conclusions Our results suggest that metformin could improve BM-EPC functions in STZ-induced diabetic mice, which was possibly dependent on the AMPK/eNOS pathway. Electronic supplementary material The online version of this article (doi:10.1186/s12933-016-0408-3) contains supplementary material, which is available to authorized users.
                Bookmark

                Author and article information

                Contributors
                Journal
                PeerJ
                PeerJ
                peerj
                peerj
                PeerJ
                PeerJ Inc. (San Diego, USA )
                2167-8359
                17 October 2019
                2019
                : 7
                : e7815
                Affiliations
                [1 ]Department of Pharmacy, School of Life and Health Sciences, Anhui Science and Technology University , Fengyang, Anhui, China
                [2 ]Laboratory Animal Center, Zhejiang Academy of Medical Sciences , Hangzhou, Zhejiang Province, China
                [3 ]School of Clinical Medicine, Wannan Medicial Colledge , Wuhu, Anhui, China
                [4 ]Department of Orthopedic Surgery, Spine Center, Changzheng Hospital, Second Military Medical University , Shanghai, China
                Article
                7815
                10.7717/peerj.7815
                6800979
                31637120
                651fc70e-9620-415a-815e-2aa7af05017a
                ©2019 Zhou et al.

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ) and either DOI or URL of the article must be cited.

                History
                : 31 May 2019
                : 2 September 2019
                Funding
                Funded by: Natural Science Foundation of Zhejiang
                Award ID: LGJ18H310002
                Award ID: LQY19H090001
                Funded by: National Natural Science Foundation of China
                Award ID: 31900381
                Award ID: 31870080
                Funded by: Medical Scientific Research Foundation of Zhejiang Province
                Award ID: 2020388156
                Funded by: Youth start-up fund of Second Military Medical University
                Award ID: 2018QN13
                Funded by: Innovation Training Program of Anhui
                Award ID: 201810368117
                This study was supported by the Natural Science Foundation of Zhejiang (Grants LGJ18H310002 and LQY19H090001), National Natural Science Foundation of China (No. 31900381 and 31870080), the Medical Scientific Research Foundation of Zhejiang Province (No. 2020388156), the Youth start-up fund of Second Military Medical University (Grant No. 2018QN13), and the Innovation Training Program of Anhui (No. 201810368117). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Cell Biology
                Diabetes and Endocrinology
                Pharmacology

                diabetes mellitus,rosiglitazone,endothelial precursor cell,angiogenesis,wound healing,vascular endothelial growth factor

                Comments

                Comment on this article