9
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      Call for Papers: Green Renal Replacement Therapy: Caring for the Environment

      Submit here before July 31, 2024

      About Blood Purification: 3.0 Impact Factor I 5.6 CiteScore I 0.83 Scimago Journal & Country Rank (SJR)

      • Record: found
      • Abstract: found
      • Article: found

      Extracorporeal Carbon Dioxide Removal: The Future of Lung Support Lies in the History

      review-article

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Extracorporeal organ support in patients with dysfunction of vital organs like the kidney, heart, and liver has proven helpful in bridging the patients to recovery or more definitive therapy. Mechanical ventilation in patients with respiratory failure, although indispensable, has been associated with worsening injury to the lungs, termed ventilator-induced lung injury. Application of lung-protective ventilation strategies are limited by inevitable hypercapnia and hypercapnic acidosis. Various alternative extracorporeal strategies, proposed more than 30 years ago, to combat hypercapnia are now more readily available. In particular, the venovenous approach to effective carbon dioxide removal, which involves minimal invasiveness comparable to renal replacement therapy, appears to be very promising. The clinical applications of these extracorporeal carbon dioxide removal therapies may extend beyond just lung protection in ventilated patients. This article summarizes the rationale, technology and clinical application of various extracorporeal lung assist techniques available for clinical use, and some of the future perspectives in the field.

          Related collections

          Most cited references70

          • Record: found
          • Abstract: found
          • Article: not found

          Extracorporeal Membrane Oxygenation for 2009 Influenza A(H1N1) Acute Respiratory Distress Syndrome.

          The novel influenza A(H1N1) pandemic affected Australia and New Zealand during the 2009 southern hemisphere winter. It caused an epidemic of critical illness and some patients developed severe acute respiratory distress syndrome (ARDS) and were treated with extracorporeal membrane oxygenation (ECMO). To describe the characteristics of all patients with 2009 influenza A(H1N1)-associated ARDS treated with ECMO and to report incidence, resource utilization, and patient outcomes. An observational study of all patients (n = 68) with 2009 influenza A(H1N1)-associated ARDS treated with ECMO in 15 intensive care units (ICUs) in Australia and New Zealand between June 1 and August 31, 2009. Incidence, clinical features, degree of pulmonary dysfunction, technical characteristics, duration of ECMO, complications, and survival. Sixty-eight patients with severe influenza-associated ARDS were treated with ECMO, of whom 61 had either confirmed 2009 influenza A(H1N1) (n = 53) or influenza A not subtyped (n = 8), representing an incidence rate of 2.6 ECMO cases per million population. An additional 133 patients with influenza A received mechanical ventilation but no ECMO in the same ICUs. The 68 patients who received ECMO had a median (interquartile range [IQR]) age of 34.4 (26.6-43.1) years and 34 patients (50%) were men. Before ECMO, patients had severe respiratory failure despite advanced mechanical ventilatory support with a median (IQR) Pao(2)/fraction of inspired oxygen (Fio(2)) ratio of 56 (48-63), positive end-expiratory pressure of 18 (15-20) cm H(2)O, and an acute lung injury score of 3.8 (3.5-4.0). The median (IQR) duration of ECMO support was 10 (7-15) days. At the time of reporting, 48 of the 68 patients (71%; 95% confidence interval [CI], 60%-82%) had survived to ICU discharge, of whom 32 had survived to hospital discharge and 16 remained as hospital inpatients. Fourteen patients (21%; 95% CI, 11%-30%) had died and 6 remained in the ICU, 2 of whom were still receiving ECMO. During June to August 2009 in Australia and New Zealand, the ICUs at regional referral centers provided mechanical ventilation for many patients with 2009 influenza A(H1N1)-associated respiratory failure, one-third of whom received ECMO. These ECMO-treated patients were often young adults with severe hypoxemia and had a 21% mortality rate at the end of the study period.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            A positive fluid balance is associated with a worse outcome in patients with acute renal failure

            Introduction Despite significant improvements in intensive care medicine, the prognosis of acute renal failure (ARF) remains poor, with mortality ranging from 40% to 65%. The aim of the present observational study was to analyze the influence of patient characteristics and fluid balance on the outcome of ARF in intensive care unit (ICU) patients. Methods The data were extracted from the Sepsis Occurrence in Acutely Ill Patients (SOAP) study, a multicenter observational cohort study to which 198 ICUs from 24 European countries contributed. All adult patients admitted to a participating ICU between 1 and 15 May 2002, except those admitted for uncomplicated postoperative surveillance, were eligible for the study. For the purposes of this substudy, patients were divided into two groups according to whether they had ARF. The groups were compared with respect to patient characteristics, fluid balance, and outcome. Results Of the 3,147 patients included in the SOAP study, 1,120 (36%) had ARF at some point during their ICU stay. Sixty-day mortality rates were 36% in patients with ARF and 16% in patients without ARF (P < 0.01). Oliguric patients and patients treated with renal replacement therapy (RRT) had higher 60-day mortality rates than patients without oliguria or the need for RRT (41% versus 33% and 52% versus 32%, respectively; P < 0.01). Independent risk factors for 60-day mortality in the patients with ARF were age, Simplified Acute Physiology Score II (SAPS II), heart failure, liver cirrhosis, medical admission, mean fluid balance, and need for mechanical ventilation. Among patients treated with RRT, length of stay and mortality were lower when RRT was started early in the course of the ICU stay. Conclusion In this large European multicenter study, a positive fluid balance was an important factor associated with increased 60-day mortality. Outcome among patients treated with RRT was better when RRT was started early in the course of the ICU stay.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Tidal hyperinflation during low tidal volume ventilation in acute respiratory distress syndrome.

              Tidal volume and plateau pressure limitation decreases mortality in acute respiratory distress syndrome. Computed tomography demonstrated a small, normally aerated compartment on the top of poorly aerated and nonaerated compartments that may be hyperinflated by tidal inflation. We hypothesized that despite tidal volume and plateau pressure limitation, patients with a larger nonaerated compartment are exposed to tidal hyperinflation of the normally aerated compartment. Pulmonary computed tomography at end-expiration and end-inspiration was obtained in 30 patients ventilated with a low tidal volume (6 ml/kg predicted body weight). Cluster analysis identified 20 patients in whom tidal inflation occurred largely in the normally aerated compartment (69.9 +/- 6.9%; "more protected"), and 10 patients in whom tidal inflation occurred largely within the hyperinflated compartments (63.0 +/- 12.7%; "less protected"). The nonaerated compartment was smaller and the normally aerated compartment was larger in the more protected patients than in the less protected patients (p = 0.01). Pulmonary cytokines were lower in the more protected patients than in the less protected patients (p < 0.05). Ventilator-free days were 7 +/- 8 and 1 +/- 2 d in the more protected and less protected patients, respectively (p = 0.01). Plateau pressure ranged between 25 and 26 cm H(2)O in the more protected patients and between 28 and 30 cm H(2)O in the less protected patients (p = 0.006). Limiting tidal volume to 6 ml/kg predicted body weight and plateau pressure to 30 cm H(2)O may not be sufficient in patients characterized by a larger nonaerated compartment.
                Bookmark

                Author and article information

                Journal
                BPU
                Blood Purif
                10.1159/issn.0253-5068
                Blood Purification
                S. Karger AG
                978-3-318-02240-7
                978-3-318-02241-4
                0253-5068
                1421-9735
                2012
                October 2012
                24 October 2012
                : 34
                : 2
                : 94-106
                Affiliations
                aInternational Renal Research Institute, and Departments of bIntensive Care and cNephrology, Dialysis and Transplantation, Ospedale San Bortolo, Vicenza, and dUniversità degli Studi di Pavia, IRCCS Policlinico San Matteo, Pavia, Italy; eSingapore General Hospital, Singapore; fEmergency Medicine and Disaster Department, Medical University of Bialystok, Bialystok, Poland
                Author notes
                *Claudio Ronco, MD, Department of Nephrology, Ospedale San Bortolo, Viale Rodolfi 37, IT–36100 Vicenza (Italy), Tel. +39 0444 753 650, E-Mail cronco@goldnet.it
                Article
                341904 Blood Purif 2012;34:94–106
                10.1159/000341904
                23095408
                6526e04d-c58d-4b49-bae5-589708757f7b
                © 2012 S. Karger AG, Basel

                Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher. Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug. Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.

                History
                Page count
                Figures: 6, Tables: 1, Pages: 13
                Categories
                Advances in Technology

                Cardiovascular Medicine,Nephrology
                Lung-protective ventilation,Lung support,Extracorporeal carbon dioxide removal,Extracorporeal membrane oxygenation

                Comments

                Comment on this article