73
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      HIV and Mature Dendritic Cells: Trojan Exosomes Riding the Trojan Horse?

      discussion

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Exosomes are secreted cellular vesicles that can induce specific CD4 + T cell responses in vivo when they interact with competent antigen-presenting cells like mature dendritic cells (mDCs). The Trojan exosome hypothesis proposes that retroviruses can take advantage of the cell-encoded intercellular vesicle traffic and exosome exchange pathway, moving between cells in the absence of fusion events in search of adequate target cells. Here, we discuss recent data supporting this hypothesis, which further explains how DCs can capture and internalize retroviruses like HIV-1 in the absence of fusion events, leading to the productive infection of interacting CD4 + T cells and contributing to viral spread through a mechanism known as trans-infection. We suggest that HIV-1 can exploit an exosome antigen-dissemination pathway intrinsic to mDCs, allowing viral internalization and final trans-infection of CD4 + T cells. In contrast to previous reports that focus on the ability of immature DCs to capture HIV in the mucosa, this review emphasizes the outstanding role that mature DCs could have promoting trans-infection in the lymph node, underscoring a new potential viral dissemination pathway.

          Related collections

          Most cited references60

          • Record: found
          • Abstract: found
          • Article: not found

          Taking dendritic cells into medicine.

          Dendritic cells (DCs) orchestrate a repertoire of immune responses that bring about resistance to infection and silencing or tolerance to self. In the settings of infection and cancer, microbes and tumours can exploit DCs to evade immunity, but DCs also can generate resistance, a capacity that is readily enhanced with DC-targeted vaccines. During allergy, autoimmunity and transplant rejection, DCs instigate unwanted responses that cause disease, but, again, DCs can be harnessed to silence these conditions with novel therapies. Here we present some medical implications of DC biology that account for illness and provide opportunities for prevention and therapy.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Eradication of established murine tumors using a novel cell-free vaccine: dendritic cell-derived exosomes.

            Dendritic cells (DCs) are professional antigen presenting cells with the unique capacity to induce primary and secondary immune responses in vivo. Here, we show that DCs secrete antigen presenting vesicles, called exosomes, which express functional Major Histocompatibility Complex class I and class II, and T-cell costimulatory molecules. Tumor peptide-pulsed DC-derived exosomes prime specific cytotoxic T lymphocytes in vivo and eradicate or suppress growth of established murine tumors in a T cell-dependent manner. Exosome-based cell-free vaccines represent an alternative to DC adoptive therapy for suppressing tumor growth.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              HIV-1 dynamics in vivo: virion clearance rate, infected cell life-span, and viral generation time.

              A new mathematical model was used to analyze a detailed set of human immunodeficiency virus-type 1 (HIV-1) viral load data collected from five infected individuals after the administration of a potent inhibitor of HIV-1 protease. Productively infected cells were estimated to have, on average, a life-span of 2.2 days (half-life t 1/2 = 1.6 days), and plasma virions were estimated to have a mean life-span of 0.3 days (t 1/2 = 0.24 days). The estimated average total HIV-1 production was 10.3 x 10(9) virions per day, which is substantially greater than previous minimum estimates. The results also suggest that the minimum duration of the HIV-1 life cycle in vivo is 1.2 days on average, and that the average HIV-1 generation time--defined as the time from release of a virion until it infects another cell and causes the release of a new generation of viral particles--is 2.6 days. These findings on viral dynamics provide not only a kinetic picture of HIV-1 pathogenesis, but also theoretical principles to guide the development of treatment strategies.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Pathog
                plos
                plospath
                PLoS Pathogens
                Public Library of Science (San Francisco, USA )
                1553-7366
                1553-7374
                March 2010
                March 2010
                26 March 2010
                : 6
                : 3
                : e1000740
                Affiliations
                [1 ]IrsiCaixa Foundation, Badalona, Spain
                [2 ]Laboratory of Immunobiology for Research and Application to Diagnosis (LIRAD), Blood and Tissue Bank, Badalona, Spain
                [3 ]Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
                [4 ]Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
                University of California San Diego, United States of America
                Author notes
                Article
                09-PLPA-RV-0663R2
                10.1371/journal.ppat.1000740
                2845607
                20360840
                6528c86a-39f6-4548-b526-ca675ca38002
                Izquierdo-Useros et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                Page count
                Pages: 9
                Categories
                Review
                Immunology
                Immunology/Immune Response
                Immunology/Immunity to Infections
                Virology
                Virology/Immune Evasion
                Virology/Immunodeficiency Viruses

                Infectious disease & Microbiology
                Infectious disease & Microbiology

                Comments

                Comment on this article