218
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Community structure and metabolism through reconstruction of microbial genomes from the environment

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Microbial communities are vital in the functioning of all ecosystems; however, most microorganisms are uncultivated, and their roles in natural systems are unclear. Here, using random shotgun sequencing of DNA from a natural acidophilic biofilm, we report reconstruction of near-complete genomes of Leptospirillum group II and Ferroplasma type II, and partial recovery of three other genomes. This was possible because the biofilm was dominated by a small number of species populations and the frequency of genomic rearrangements and gene insertions or deletions was relatively low. Because each sequence read came from a different individual, we could determine that single-nucleotide polymorphisms are the predominant form of heterogeneity at the strain level. The Leptospirillum group II genome had remarkably few nucleotide polymorphisms, despite the existence of low-abundance variants. The Ferroplasma type II genome seems to be a composite from three ancestral strains that have undergone homologous recombination to form a large population of mosaic genomes. Analysis of the gene complement for each organism revealed the pathways for carbon and nitrogen fixation and energy generation, and provided insights into survival strategies in an extreme environment.

          Related collections

          Most cited references39

          • Record: found
          • Abstract: found
          • Article: not found

          Microbial communities in acid mine drainage.

          The dissolution of sulfide minerals such as pyrite (FeS2), arsenopyrite (FeAsS), chalcopyrite (CuFeS2), sphalerite (ZnS), and marcasite (FeS2) yields hot, sulfuric acid-rich solutions that contain high concentrations of toxic metals. In locations where access of oxidants to sulfide mineral surfaces is increased by mining, the resulting acid mine drainage (AMD) may contaminate surrounding ecosystems. Communities of autotrophic and heterotrophic archaea and bacteria catalyze iron and sulfur oxidation, thus may ultimately determine the rate of release of metals and sulfur to the environment. AMD communities contain fewer prokaryotic lineages than many other environments. However, it is notable that at least two archaeal and eight bacterial divisions have representatives able to thrive under the extreme conditions typical of AMD. AMD communities are characterized by a very limited number of distinct species, probably due to the small number of metabolically beneficial reactions available. The metabolisms that underpin these communities include organoheterotrophy and autotrophic iron and sulfur oxidation. Other metabolic activity is based on anaerobic sulfur oxidation and ferric iron reduction. Evidence for physiological synergy in iron, sulfur, and carbon flow in these communities is reviewed. The microbial and geochemical simplicity of these systems makes them ideal targets for quantitative, genomic-based analyses of microbial ecology and evolution and community function.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Acidic mine drainage: the rate-determining step.

            The rate-determining step in the oxidation of iron pyrite and the formation of acidity in streams associated with coal and copper mines is the oxidation of ferrous iron. Effective pollution abatement necessitates control ling this reaction.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A Molecular View of Microbial Diversity and the Biosphere

              N. Pace (1997)
              Over three decades of molecular-phylogenetic studies, researchers have compiled an increasingly robust map of evolutionary diversification showing that the main diversity of life is microbial, distributed among three primary relatedness groups or domains: Archaea, Bacteria, and Eucarya. The general properties of representatives of the three domains indicate that the earliest life was based on inorganic nutrition and that photosynthesis and use of organic compounds for carbon and energy metabolism came comparatively later. The application of molecular-phylogenetic methods to study natural microbial ecosystems without the traditional requirement for cultivation has resulted in the discovery of many unexpected evolutionary lineages; members of some of these lineages are only distantly related to known organisms but are sufficiently abundant that they are likely to have impact on the chemistry of the biosphere.
                Bookmark

                Author and article information

                Journal
                Nature
                Nature
                Springer Science and Business Media LLC
                0028-0836
                1476-4687
                March 2004
                February 1 2004
                March 2004
                : 428
                : 6978
                : 37-43
                Article
                10.1038/nature02340
                14961025
                6530ebbc-c9dd-4b32-963c-c81c051e31e8
                © 2004

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article