8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Mesoscopic Undulations and Thickness Fluctuations in Lipid Bilayers from Molecular Dynamics Simulations

      ,

      Biophysical Journal

      Elsevier BV

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Molecular dynamics simulations of fully hydrated Dipalmitoylphosphatidylcholine bilayers, extending temporal and spatial scales by almost one order of magnitude, are presented. The present work reaches system sizes of 1024 lipids and times 10-60 ns. The simulations uncover significant dynamics and fluctuations on scales of several nanoseconds, and enable direct observation and spectral decomposition of both undulatory and thickness fluctuation modes. Although the former modes are strongly damped, the latter exhibit signs of oscillatory behavior. From this, it has been possible to calculate mesoscopic continuum properties in good agreement with experimental values. A bending modulus of 4 x 10(-20) J, bilayer area compressibility of 250-300 mN/m, and mode relaxation times in the nanosecond range are obtained. The theory of undulatory motions is revised and further extended to cover thickness fluctuations. Finally, it is proposed that thickness fluctuations is the explanation to the observed system-size dependence of equilibrium-projected area per lipid.

          Related collections

          Author and article information

          Journal
          Biophysical Journal
          Biophysical Journal
          Elsevier BV
          00063495
          July 2000
          July 2000
          : 79
          : 1
          : 426-433
          Article
          10.1016/S0006-3495(00)76304-1
          1300946
          10866968
          © 2000

          Comments

          Comment on this article