1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      In vitro hemocompatibility and corrosion behavior of new Zr-binary alloys in whole human blood

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The aim of this study is to evaluate the accuracy of three binary alloys’ composition, and their biocompatibility. Depending on the intended use of the medical devices made from these materials, dynamic or static tests should be performed. We have chosen static tests as we thought they may be used as knee or hip replacement, and not as cardiac valves.

          Three binary alloys ( Zr10Nb, Zr2.5Nb and Zr12Ta) were obtained from high purity powders (>99.9%), using an induction furnace first, and an electric arc furnace for a perfect homogenization. Their final composition was verified with a XRF analyzer-INNOV-X.

          Hemolysis tests can determine the degree of red blood cells lysis and the release of hemoglobin. The released hemoglobin quantity was extremely small, under 2%, in all cases, and the coagulation tests showed no risk for thrombosis. The electrochemical behavior was also studied in biological fluid, human female serum, and showed a low corrosion rate.

          The obtained alloys do not cause hemolysis, so they are hemocompatible with all blood types.

          Related collections

          Most cited references18

          • Record: found
          • Abstract: found
          • Article: not found

          Biocompatibility of beta-stabilizing elements of titanium alloys.

          In comparison to the presently used alpha + beta titanium alloys for biomedical applications, beta-titanium alloys have many advantageous mechanical properties, such as an improved wear resistance, a high elasticity and an excellent cold and hot formability. This will promote their future increased application as materials for orthopaedic joint replacements. Not all elements with beta-stabilizing properties in titanium alloys are suitable for biomaterial applications-corrosion and wear processes cause a release of these alloying elements to the surrounding tissue. In this investigation, the biocompability of alloying elements for beta- and near beta-titanium alloys was tested in order to estimate their suitability for biomaterial components. Titanium (grade 2) and the implant steel X2CrNiMo18153 (AISI 316 L) were tested as reference materials. The investigation included the corrosion properties of the elements, proliferation, mitochondrial activity, cell morphology and the size of MC3T3-E1 cells and GM7373 cells after 7 days incubation in direct contact with polished slices of the metals. The statistical significance was considered by Weir-test and Lord-test (alpha = 0.05). The biocompatibility range of the investigated metals is (decreasing biocompatibility): niobium-tantalum, titanium, zirconium-aluminium-316 L-molybdenum.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Interaction of cultured human endothelial cells with polymeric surfaces of different wettabilities.

            The in vitro interaction of human endothelial cells (HEC) and polymers with different wettabilities in culture medium containing serum was investigated. Optimal adhesion of HEC generally occurred onto moderately wettable polymers. Within a series of cellulose type of polymers the cell adhesion increased with increasing contact angle of the polymer surfaces. Proliferation of HEC occurred when adhesion was followed by progressive flattening of the cells. Our results suggest that moderately wettable polymers exhibit a serum and/or cellular protein adsorption pattern that is favourable for growth of HEC.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Surface modification of polymers for medical applications.

              Y Ikada (1994)
              Most of the conventional materials do not meet the demands required for both their surface and bulk properties when used as biomaterials. An effective approach for developing a clinically applicable biomaterial is to modify the surface of the material which already has excellent biofunctionality and bulk properties. This review article focuses on the surface modification of polymers by grafting techniques, which have long been known in polymer chemistry but are not yet widely applied to biomaterials. A grafted surface can be produced primarily either by graft polymerization of monomers or covalent coupling reaction of existing polymer molecules onto the substrate polymer surface. The major surface properties that should be modified include two kinds of biocompatibility. One is the surface property that elicits the least foreign-body reactions and the other is the cell- and tissue-bonding capability. In addition, physiologically active surfaces with, for instance, selective adsorbability may be required. Attempts to produce these biocompatible or biospecific surfaces by grafting techniques are briefly overviewed in this article.
                Bookmark

                Author and article information

                Journal
                Open Chemistry
                Walter de Gruyter GmbH
                2391-5420
                July 1 2014
                July 1 2014
                : 12
                : 7
                : 796-803
                Affiliations
                [1 ]1University Politehnica of Bucharest
                [2 ]2University Titu Maiorescu
                Article
                10.2478/s11532-014-0535-1
                653bc0f5-592a-4776-a9c6-8c2dadb74fcd
                © 2014

                http://creativecommons.org/licenses/by-nc-nd/3.0/

                History

                Comments

                Comment on this article