35
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Salmon Louse Lepeophtheirus salmonis (Copepoda: Caligidae) Life Cycle Has Only Two Chalimus Stages

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Each year the salmon louse ( Lepeophtheirus salmonis Krøyer, 1838) causes multi-million dollar commercial losses to the salmon farming industry world-wide, and strict lice control regimes have been put in place to reduce the release of salmon louse larvae from aquaculture facilities into the environment. For half a century, the Lepeophtheirus life cycle has been regarded as the only copepod life cycle including 8 post-nauplius instars as confirmed in four different species, including L . salmonis . Here we prove that the accepted life cycle of the salmon louse is wrong. By observations of chalimus larvae molting in incubators and by morphometric cluster analysis, we show that there are only two chalimus instars: chalimus 1 (comprising the former chalimus I and II stages which are not separated by a molt) and chalimus 2 (the former chalimus III and IV stages which are not separated by a molt). Consequently the salmon louse life cycle has only six post-nauplius instars, as in other genera of caligid sea lice and copepods in general. These findings are of fundamental importance in experimental studies as well as for interpretation of salmon louse biology and for control and management of this economically important parasite.

          Related collections

          Most cited references9

          • Record: found
          • Abstract: not found
          • Article: not found

          The global economic cost of sea lice to the salmonid farming industry.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Transmission dynamics of parasitic sea lice from farm to wild salmon.

            Marine salmon farming has been correlated with parasitic sea lice infestations and concurrent declines of wild salmonids. Here, we report a quantitative analysis of how a single salmon farm altered the natural transmission dynamics of sea lice to juvenile Pacific salmon. We studied infections of sea lice (Lepeophtheirus salmonis and Caligus clemensi) on juvenile pink salmon (Oncorhynchus gorbuscha) and chum salmon (Oncorhynchus keta) as they passed an isolated salmon farm during their seaward migration down two long and narrow corridors. Our calculations suggest the infection pressure imposed by the farm was four orders of magnitude greater than ambient levels, resulting in a maximum infection pressure near the farm that was 73 times greater than ambient levels and exceeded ambient levels for 30 km along the two wild salmon migration corridors. The farm-produced cohort of lice parasitizing the wild juvenile hosts reached reproductive maturity and produced a second generation of lice that re-infected the juvenile salmon. This raises the infection pressure from the farm by an additional order of magnitude, with a composite infection pressure that exceeds ambient levels for 75 km of the two migration routes. Amplified sea lice infestations due to salmon farms are a potential limiting factor to wild salmonid conservation.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Establishment and characterisation of salmon louse (Lepeophtheirus salmonis (Krøyer 1837)) laboratory strains.

              The salmon louse (Lepeophtheirus salmonis (Krøyer 1837)) is an ectoparasitic copepod which represents a major pathogen of wild and farmed salmonid fishes in the marine environment. In order to facilitate research on this ecologically and economically important parasite, a hatchery and culturing system permitting the closure of the life-cycle of L. salmonis in the laboratory was developed. Here, the hatchery system, breeding practices, and selected louse strains that have been maintained in culture in the period 2002-2009 are presented. The hatchery and culture protocol gave rise to predictable hatching of larvae and infections of host fish, permitting the cultivation of specific strains of L. salmonis for 22 generations. Both in- and out-bred lice and mutant colour strains have been established, and some of these strains were characterised by microsatellite DNA markers confirming their pedigree. No evidence of inbreeding depression, fitness or morphological changes was observed in any of the strains cultured. It is suggested that the culturing system, and the strains produced represent a significant resource for future research on this parasite.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2013
                12 September 2013
                : 8
                : 9
                : e73539
                Affiliations
                [1 ]Sea Lice Research Centre, University of Bergen, Bergen, Norway
                [2 ]Aquatic pathogens and diseases, Institute of Marine Research, Bergen, Norway
                [3 ]Institute of Aquaculture, University of Stirling, Stirling, Scotland, United Kingdom
                [4 ]Natural History Museum, London, United Kingdom
                University of Toronto, Canada
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Conceived and designed the experiments: LAH CE JB RSM. Performed the experiments: LAH CE CMAC SD RSM. Analyzed the data: LAH CE RSM. Contributed reagents/materials/analysis tools: FN RSM. Wrote the manuscript: LAH CE CMAC RSM GB.

                [☯]

                These authors contributed equally to this work.

                Article
                PONE-D-13-15354
                10.1371/journal.pone.0073539
                3772071
                24069203
                653db72c-d6e0-47de-b42a-9b5f97209657
                Copyright @ 2013

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 12 April 2013
                : 19 July 2013
                Funding
                This research has been funded by the Research Council of Norway (RCN) and the Norwegian Seafood Research Fund (FHF) through the SFI-Sea Lice Research Centre (RCN grant number 203513) and the PrevenT project (FHF grant number 900416 and RCN grant number 199778). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article