9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Engineering Microneedles for Therapy and Diagnosis: A Survey

      review-article
      1 , * , 1 , 2 , * , 3
      Micromachines
      MDPI
      microneedle, diagnosis, point of care, drug delivery

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Microneedle (MN) technology is a rising star in the point-of-care (POC) field, which has gained increasing attention from scientists and clinics. MN-based POC devices show great potential for detecting various analytes of clinical interests and transdermal drug delivery in a minimally invasive manner owing to MNs’ micro-size sharp tips and ease of use. This review aims to go through the recent achievements in MN-based devices by investigating the selection of materials, fabrication techniques, classification, and application, respectively. We further highlight critical aspects of MN platforms for transdermal biofluids extraction, diagnosis, and drug delivery assisted disease therapy. Moreover, multifunctional MNs for stimulus-responsive drug delivery systems were discussed, which show incredible potential for accurate and efficient disease treatment in dynamic environments for a long period of time. In addition, we also discuss the remaining challenges and emerging trend of MN-based POC devices from the bench to the bedside.

          Related collections

          Most cited references158

          • Record: found
          • Abstract: not found
          • Article: not found

          Silicon as a mechanical material

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Microneedles for drug and vaccine delivery.

            Microneedles were first conceptualized for drug delivery many decades ago, but only became the subject of significant research starting in the mid-1990's when microfabrication technology enabled their manufacture as (i) solid microneedles for skin pretreatment to increase skin permeability, (ii) microneedles coated with drug that dissolves off in the skin, (iii) polymer microneedles that encapsulate drug and fully dissolve in the skin and (iv) hollow microneedles for drug infusion into the skin. As shown in more than 350 papers now published in the field, microneedles have been used to deliver a broad range of different low molecular weight drugs, biotherapeutics and vaccines, including published human studies with a number of small-molecule and protein drugs and vaccines. Influenza vaccination using a hollow microneedle is in widespread clinical use and a number of solid microneedle products are sold for cosmetic purposes. In addition to applications in the skin, microneedles have also been adapted for delivery of bioactives into the eye and into cells. Successful application of microneedles depends on device function that facilitates microneedle insertion and possible infusion into skin, skin recovery after microneedle removal, and drug stability during manufacturing, storage and delivery, and on patient outcomes, including lack of pain, skin irritation and skin infection, in addition to drug efficacy and safety. Building off a strong technology base and multiple demonstrations of successful drug delivery, microneedles are poised to advance further into clinical practice to enable better pharmaceutical therapies, vaccination and other applications. Copyright © 2012 Elsevier B.V. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Dissolving Polymer Microneedle Patches for Influenza Vaccination

              Influenza prophylaxis would benefit from a vaccination method enabling simplified logistics and improved immunogenicity without the dangers posed by hypodermic needles. Here, we introduce dissolving microneedle patches for influenza vaccination using a simple patch-based system that targets delivery to skin’s antigen-presenting cells. Microneedles were fabricated using a biocompatible polymer encapsulating inactivated influenza virus vaccine for insertion and dissolution in the skin within minutes. Microneedle vaccination generated robust antibody and cellular immune responses in mice that provided complete protection against lethal challenge. Compared to conventional intramuscular injection, microneedle vaccination resulted in more efficient lung virus clearance and enhanced cellular recall responses after challenge. These results suggest that dissolving microneedle patches can provide a novel technology for simpler and safer vaccination with improved immunogenicity that could facilitate increased vaccination coverage.
                Bookmark

                Author and article information

                Journal
                Micromachines (Basel)
                Micromachines (Basel)
                micromachines
                Micromachines
                MDPI
                2072-666X
                05 March 2020
                March 2020
                : 11
                : 3
                : 271
                Affiliations
                [1 ]College of Medicine and Biological Information Engineering, Northeastern University, Shenyang 110169, China; zhdl555555@ 123456gmail.com
                [2 ]Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX 79968, USA
                [3 ]Department of Electrical and Computer Engineering, University of Texas, EI Paso, TX 79968, USA; wqian@ 123456bmie.neu.edu.cn
                Author notes
                [* ]Correspondence: xielp@ 123456bmie.neu.edu.cn (L.X.); jsun@ 123456utep.edu (J.S.)
                [†]

                These authors contributed equally to this work.

                Article
                micromachines-11-00271
                10.3390/mi11030271
                7143426
                32150866
                65916629-ce46-4d68-8c68-49f991203153
                © 2020 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 17 January 2020
                : 28 February 2020
                Categories
                Review

                microneedle,diagnosis,point of care,drug delivery
                microneedle, diagnosis, point of care, drug delivery

                Comments

                Comment on this article