3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Elucidation of the Mechanisms and Molecular Targets of Shuanglian Decoction for the Treatment of Hepatocellular Carcinoma Based on Network Pharmacology

      research-article
      , , , § , § ,
      ACS Omega
      American Chemical Society

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Shuanglian decoction (SLD) is traditionally used to treat hepatocellular carcinoma (HCC) in the clinical practice of traditional Chinese medicine. However, its mechanisms of action and molecular targets for the treatment of HCC are not clear. The active compounds of SLD were collected and their targets were identified. HCC-related targets were obtained by analyzing the differentially expressed genes between HCC patients and healthy individuals. Protein–protein interaction (PPI) data were then obtained and PPI networks of SLD putative targets and HCC-related targets were visualized and merged to identify the candidate targets for SLD against HCC. Gene ontology and Kyoto Encyclopedia of Genes and Genomes pathway analysis were carried out. The gene-pathway network was constructed to screen the key target genes. In total, 35 active compounds and 31 targets of SLD were identified. In total, 245 differentially expressed genes with P values <0.005 and |log2 (fold change)| > 1 were identified between HCC patients and control groups, and 68 target genes associated with HCC were finally identified. Twenty-one pathways including cellular senescence, p53 signaling pathway, and cell cycle were significantly enriched. CYP3A4 was the core gene and other several genes including CYP1A2, PPP3CA, PTGS2, CCCNB1, and CDK1 were the key genes in the gene-pathway network of SLD for the treatment of HCC. The results indicated that SLD’s effects against HCC may relate to the regulation of an antioxidant function through specific biological processes and related pathways. This study demonstrates the application of network pharmacology in evaluating mechanisms of action and molecular targets of complex herbal formulations.

          Related collections

          Most cited references44

          • Record: found
          • Abstract: found
          • Article: not found

          Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources.

          DAVID bioinformatics resources consists of an integrated biological knowledgebase and analytic tools aimed at systematically extracting biological meaning from large gene/protein lists. This protocol explains how to use DAVID, a high-throughput and integrated data-mining environment, to analyze gene lists derived from high-throughput genomic experiments. The procedure first requires uploading a gene list containing any number of common gene identifiers followed by analysis using one or more text and pathway-mining tools such as gene functional classification, functional annotation chart or clustering and functional annotation table. By following this protocol, investigators are able to gain an in-depth understanding of the biological themes in lists of genes that are enriched in genome-scale studies.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Cancer statistics in China, 2015.

            With increasing incidence and mortality, cancer is the leading cause of death in China and is a major public health problem. Because of China's massive population (1.37 billion), previous national incidence and mortality estimates have been limited to small samples of the population using data from the 1990s or based on a specific year. With high-quality data from an additional number of population-based registries now available through the National Central Cancer Registry of China, the authors analyzed data from 72 local, population-based cancer registries (2009-2011), representing 6.5% of the population, to estimate the number of new cases and cancer deaths for 2015. Data from 22 registries were used for trend analyses (2000-2011). The results indicated that an estimated 4292,000 new cancer cases and 2814,000 cancer deaths would occur in China in 2015, with lung cancer being the most common incident cancer and the leading cause of cancer death. Stomach, esophageal, and liver cancers were also commonly diagnosed and were identified as leading causes of cancer death. Residents of rural areas had significantly higher age-standardized (Segi population) incidence and mortality rates for all cancers combined than urban residents (213.6 per 100,000 vs 191.5 per 100,000 for incidence; 149.0 per 100,000 vs 109.5 per 100,000 for mortality, respectively). For all cancers combined, the incidence rates were stable during 2000 through 2011 for males (+0.2% per year; P = .1), whereas they increased significantly (+2.2% per year; P < .05) among females. In contrast, the mortality rates since 2006 have decreased significantly for both males (-1.4% per year; P < .05) and females (-1.1% per year; P < .05). Many of the estimated cancer cases and deaths can be prevented through reducing the prevalence of risk factors, while increasing the effectiveness of clinical care delivery, particularly for those living in rural areas and in disadvantaged populations.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found

              Global cancer statistics.

              The global burden of cancer continues to increase largely because of the aging and growth of the world population alongside an increasing adoption of cancer-causing behaviors, particularly smoking, in economically developing countries. Based on the GLOBOCAN 2008 estimates, about 12.7 million cancer cases and 7.6 million cancer deaths are estimated to have occurred in 2008; of these, 56% of the cases and 64% of the deaths occurred in the economically developing world. Breast cancer is the most frequently diagnosed cancer and the leading cause of cancer death among females, accounting for 23% of the total cancer cases and 14% of the cancer deaths. Lung cancer is the leading cancer site in males, comprising 17% of the total new cancer cases and 23% of the total cancer deaths. Breast cancer is now also the leading cause of cancer death among females in economically developing countries, a shift from the previous decade during which the most common cause of cancer death was cervical cancer. Further, the mortality burden for lung cancer among females in developing countries is as high as the burden for cervical cancer, with each accounting for 11% of the total female cancer deaths. Although overall cancer incidence rates in the developing world are half those seen in the developed world in both sexes, the overall cancer mortality rates are generally similar. Cancer survival tends to be poorer in developing countries, most likely because of a combination of a late stage at diagnosis and limited access to timely and standard treatment. A substantial proportion of the worldwide burden of cancer could be prevented through the application of existing cancer control knowledge and by implementing programs for tobacco control, vaccination (for liver and cervical cancers), and early detection and treatment, as well as public health campaigns promoting physical activity and a healthier dietary intake. Clinicians, public health professionals, and policy makers can play an active role in accelerating the application of such interventions globally.
                Bookmark

                Author and article information

                Journal
                ACS Omega
                ACS Omega
                ao
                acsodf
                ACS Omega
                American Chemical Society
                2470-1343
                31 December 2020
                12 January 2021
                : 6
                : 1
                : 917-924
                Affiliations
                []Hepatobiliary Surgery, Zhongshan People’s Hospital , Zhongshan 528403, China
                []The Second Tumor Department, Maoming People’s Hospital , Maoming 525000, China
                [§ ]Research Center of Guangdong Medical University, Guangdong Medical University , Dongguan 523808, China
                Author notes
                Article
                10.1021/acsomega.0c05550
                7808160
                33458543
                65928d85-9184-4df5-a922-b126b2e6fc9a
                © 2020 The Authors. Published by American Chemical Society

                This is an open access article published under a Creative Commons Non-Commercial No Derivative Works (CC-BY-NC-ND) Attribution License, which permits copying and redistribution of the article, and creation of adaptations, all for non-commercial purposes.

                History
                : 13 November 2020
                : 21 December 2020
                Categories
                Article
                Custom metadata
                ao0c05550
                ao0c05550

                Comments

                Comment on this article