45
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Imaging of cranial nerves: a pictorial overview

      review-article

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The human body has 12 pairs of cranial nerves that control motor and sensory functions of the head and neck. The anatomy of cranial nerves is complex and its knowledge is crucial to detect pathological alterations in case of nervous disorders. Therefore, it is necessary to know the most frequent pathologies that may involve cranial nerves and recognize their typical characteristics of imaging. Cranial nerve dysfunctions may be the result of pathological processes of the cranial nerve itself or be related to tumors, inflammation, infectious processes, or traumatic injuries of adjacent structures. Magnetic resonance imaging (MRI) is considered the gold standard in the study of the cranial nerves. Computed tomography (CT) allows, usually, an indirect view of the nerve and is useful to demonstrate the intraosseous segments of cranial nerves, the foramina through which they exit skull base and their pathologic changes. The article is a complete pictorial overview of the imaging of cranial nerves, with anatomic and pathologic descriptions and great attention to illustrative depiction. We believe that it could be a useful guide for radiologists and neuroradiologists to review the anatomy and the most important pathologies that involve cranial nerves and their differential diagnosis.

          Related collections

          Most cited references27

          • Record: found
          • Abstract: found
          • Article: not found

          Patterns of contrast enhancement in the brain and meninges.

          Contrast material enhancement for cross-sectional imaging has been used since the mid 1970s for computed tomography and the mid 1980s for magnetic resonance imaging. Knowledge of the patterns and mechanisms of contrast enhancement facilitate radiologic differential diagnosis. Brain and spinal cord enhancement is related to both intravascular and extravascular contrast material. Extraaxial enhancing lesions include primary neoplasms (meningioma), granulomatous disease (sarcoid), and metastases (which often manifest as mass lesions). Linear pachymeningeal (dura-arachnoid) enhancement occurs after surgery and with spontaneous intracranial hypotension. Leptomeningeal (pia-arachnoid) enhancement is present in meningitis and meningoencephalitis. Superficial gyral enhancement is seen after reperfusion in cerebral ischemia, during the healing phase of cerebral infarction, and with encephalitis. Nodular subcortical lesions are typical for hematogenous dissemination and may be neoplastic (metastases) or infectious (septic emboli). Deeper lesions may form rings or affect the ventricular margins. Ring enhancement that is smooth and thin is typical of an organizing abscess, whereas thick irregular rings suggest a necrotic neoplasm. Some low-grade neoplasms are "fluid-secreting," and they may form heterogeneously enhancing lesions with an incomplete ring sign as well as the classic "cyst-with-nodule" morphology. Demyelinating lesions, including both classic multiple sclerosis and tumefactive demyelination, may also create an open ring or incomplete ring sign. Thick and irregular periventricular enhancement is typical for primary central nervous system lymphoma. Thin enhancement of the ventricular margin occurs with infectious ependymitis. Understanding the classic patterns of lesion enhancement--and the radiologic-pathologic mechanisms that produce them--can improve image assessment and differential diagnosis.
            • Record: found
            • Abstract: found
            • Article: not found

            Magnetic resonance imaging of meningiomas: a pictorial review

            Abstract Meningiomas are the most common non-glial tumour of the central nervous system (CNS). There are a number of characteristic imaging features of meningiomas on magnetic resonance imaging (MRI) that allow an accurate diagnosis, however there are a number of atypical features that may be diagnostically challenging. Furthermore, a number of other neoplastic and non-neoplastic conditions may mimic meningiomas. This pictorial review discusses the typical and atypical MRI features of meningiomas and their mimics. Teaching Points: There are several characteristic features of meningiomas on MRI that allow an accurate diagnosis Some meningiomas may display atypical imaging characteristics that may be diagnostically challenging Routine MRI sequences do not reliably distinguish between benign and malignant meningiomas Spectroscopy and diffusion tensor imaging may be useful in the diagnosis of malignant meningiomas A number of conditions may mimic meningiomas; however, they may have additional differentiating features
              • Record: found
              • Abstract: found
              • Article: not found

              Imaging of Neurovascular Compression Syndromes: Trigeminal Neuralgia, Hemifacial Spasm, Vestibular Paroxysmia, and Glossopharyngeal Neuralgia.

              Neurovascular compression syndromes are usually caused by arteries that directly contact the cisternal portion of a cranial nerve. Not all cases of neurovascular contact are clinically symptomatic. The transition zone between the central and peripheral myelin is the most vulnerable region for symptomatic neurovascular compression syndromes. Trigeminal neuralgia (cranial nerve V) has an incidence of 4-20/100,000, a transition zone of 4 mm, with symptomatic neurovascular compression typically proximal. Hemifacial spasm (cranial nerve VII) has an incidence of 1/100,000, a transition zone of 2.5 mm, with symptomatic neurovascular compression typically proximal. Vestibular paroxysmia (cranial nerve VIII) has an unknown incidence, a transition zone of 11 mm, with symptomatic neurovascular compression typically at the internal auditory canal. Glossopharyngeal neuralgia (cranial nerve IX) has an incidence of 0.5/100,000, a transition zone of 1.5 mm, with symptomatic neurovascular compression typically proximal. The transition zone overlaps the root entry zone close to the brain stem in cranial nerves V, VII, and IX, yet it is more distal and does not overlap the root entry zone in cranial nerve VIII. Although symptomatic neurovascular compression syndromes may also occur if the neurovascular contact is outside the transition zone, symptomatic neurovascular compression syndromes are more common if the neurovascular contact occurs at the transition zone or central myelin section, in particular when associated with nerve displacement and atrophy.

                Author and article information

                Contributors
                +393356321624 , romano.nicola@live.it
                Journal
                Insights Imaging
                Insights Imaging
                Insights into Imaging
                Springer Berlin Heidelberg (Berlin/Heidelberg )
                1869-4101
                15 March 2019
                15 March 2019
                December 2019
                : 10
                : 33
                Affiliations
                [1 ]ISNI 0000 0001 2151 3065, GRID grid.5606.5, Department of Health Sciences (DISSAL) - Radiology Section, , University of Genoa, ; Genoa, Italy
                [2 ]ISNI 0000 0004 1757 8650, GRID grid.450697.9, Department of Diagnostic and Interventional Neuroradiology, , E.O. Ospedali Galliera, ; Genoa, Italy
                Author information
                http://orcid.org/0000-0002-3473-5473
                Article
                719
                10.1186/s13244-019-0719-5
                6420596
                30877408
                659f1bf9-673a-4a80-814d-a38d9d18d027
                © The Author(s). 2019

                Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

                History
                : 21 November 2018
                : 12 February 2019
                Categories
                Pictorial Review
                Custom metadata
                © The Author(s) 2019

                Radiology & Imaging
                cranial nerves,magnetic resonance imaging,computed tomography,anatomy,pathology

                Comments

                Comment on this article

                Related Documents Log