Blog
About

0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      In silico virtual screening approaches for anti-viral drug discovery

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Despite the considerable advances in medical and pharmaceutical research during the past years, diseases caused by viruses have remained a major burden to public health. Virtual in silico screening has repeatedly proven to be useful to meet the special challenges of antiviral drug discovery. Large virtual compound libraries are filtered by different computational screening methods such as docking, ligand-based similarity searches or pharmacophore-based screening, reducing the number of candidate molecules to a smaller set of promising candidates that are then tested biologically. This rational approach makes the drug discovery process more goal-oriented and saves resources in terms of time and money. In this review we discuss how different virtual screening techniques can be applied to antiviral drug discovery, present recent success stories in this field and finally address the main differences between the methods.

          Related collections

          Most cited references 55

          • Record: found
          • Abstract: found
          • Article: not found

          Development and validation of a genetic algorithm for flexible docking.

          Prediction of small molecule binding modes to macromolecules of known three-dimensional structure is a problem of paramount importance in rational drug design (the "docking" problem). We report the development and validation of the program GOLD (Genetic Optimisation for Ligand Docking). GOLD is an automated ligand docking program that uses a genetic algorithm to explore the full range of ligand conformational flexibility with partial flexibility of the protein, and satisfies the fundamental requirement that the ligand must displace loosely bound water on binding. Numerous enhancements and modifications have been applied to the original technique resulting in a substantial increase in the reliability and the applicability of the algorithm. The advanced algorithm has been tested on a dataset of 100 complexes extracted from the Brookhaven Protein DataBank. When used to dock the ligand back into the binding site, GOLD achieved a 71% success rate in identifying the experimental binding mode.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Glide: a new approach for rapid, accurate docking and scoring. 2. Enrichment factors in database screening.

            Glide's ability to identify active compounds in a database screen is characterized by applying Glide to a diverse set of nine protein receptors. In many cases, two, or even three, protein sites are employed to probe the sensitivity of the results to the site geometry. To make the database screens as realistic as possible, the screens use sets of "druglike" decoy ligands that have been selected to be representative of what we believe is likely to be found in the compound collection of a pharmaceutical or biotechnology company. Results are presented for releases 1.8, 2.0, and 2.5 of Glide. The comparisons show that average measures for both "early" and "global" enrichment for Glide 2.5 are 3 times higher than for Glide 1.8 and more than 2 times higher than for Glide 2.0 because of better results for the least well-handled screens. This improvement in enrichment stems largely from the better balance of the more widely parametrized GlideScore 2.5 function and the inclusion of terms that penalize ligand-protein interactions that violate established principles of physical chemistry, particularly as it concerns the exposure to solvent of charged protein and ligand groups. Comparisons to results for the thymidine kinase and estrogen receptors published by Rognan and co-workers (J. Med. Chem. 2000, 43, 4759-4767) show that Glide 2.5 performs better than GOLD 1.1, FlexX 1.8, or DOCK 4.01.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Emergence and pandemic potential of swine-origin H1N1 influenza virus.

              Influenza viruses cause annual epidemics and occasional pandemics that have claimed the lives of millions. The emergence of new strains will continue to pose challenges to public health and the scientific communities. A prime example is the recent emergence of swine-origin H1N1 viruses that have transmitted to and spread among humans, resulting in outbreaks internationally. Efforts to control these outbreaks and real-time monitoring of the evolution of this virus should provide us with invaluable information to direct infectious disease control programmes and to improve understanding of the factors that determine viral pathogenicity and/or transmissibility.
                Bookmark

                Author and article information

                Contributors
                Journal
                Drug Discov Today Technol
                Drug Discov Today Technol
                Drug Discovery Today. Technologies
                Elsevier Ltd.
                1740-6749
                4 August 2012
                Autumn 2012
                4 August 2012
                : 9
                : 3
                : e219-e225
                Affiliations
                Freie Universität Berlin, Institute of Pharmacy, Department Pharmaceutical Chemistry, Koenigin-Luise-Str. 2, 14195 Berlin, Germany
                Author notes
                [* ]Corresponding author. gerhard.wolber@ 123456fu-berlin.de
                Article
                S1740-6749(12)00049-2
                10.1016/j.ddtec.2012.07.009
                7105918
                24990575
                Copyright © 2012 Elsevier Ltd. All rights reserved.

                Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.

                Categories
                Article

                Comments

                Comment on this article