30
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Gene expression profiles in skeletal muscle after gene electrotransfer

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Gene transfer by electroporation (DNA electrotransfer) to muscle results in high level long term transgenic expression, showing great promise for treatment of e.g. protein deficiency syndromes. However little is known about the effects of DNA electrotransfer on muscle fibres. We have therefore investigated transcriptional changes through gene expression profile analyses, morphological changes by histological analysis, and physiological changes by force generation measurements. DNA electrotransfer was obtained using a combination of a short high voltage pulse (HV, 1000 V/cm, 100 μs) followed by a long low voltage pulse (LV, 100 V/cm, 400 ms); a pulse combination optimised for efficient and safe gene transfer. Muscles were transfected with green fluorescent protein (GFP) and excised at 4 hours, 48 hours or 3 weeks after treatment.

          Results

          Differentially expressed genes were investigated by microarray analysis, and descriptive statistics were performed to evaluate the effects of 1) electroporation, 2) DNA injection, and 3) time after treatment. The biological significance of the results was assessed by gene annotation and supervised cluster analysis.

          Generally, electroporation caused down-regulation of structural proteins e.g. sarcospan and catalytic enzymes. Injection of DNA induced down-regulation of intracellular transport proteins e.g. sentrin. The effects on muscle fibres were transient as the expression profiles 3 weeks after treatment were closely related with the control muscles. Most interestingly, no changes in the expression of proteins involved in inflammatory responses or muscle regeneration was detected, indicating limited muscle damage and regeneration. Histological analysis revealed structural changes with loss of cell integrity and striation pattern in some fibres after DNA+HV+LV treatment, while HV+LV pulses alone showed preservation of cell integrity. No difference in the force generation capacity was observed in the muscles 2 weeks after DNA electrotransfer.

          Conclusion

          The small and transient changes found in the gene expression profiles are of great importance, as this demonstrates that DNA electrotransfer is safe with minor effects on the muscle host cells. These findings are essential for introducing the DNA electrotransfer to muscle for clinical use. Indeed the HV+LV pulse combination used has been optimised to ensure highly efficient and safe DNA electrotransfer.

          Related collections

          Most cited references47

          • Record: found
          • Abstract: found
          • Article: not found

          Model-based analysis of oligonucleotide arrays: expression index computation and outlier detection.

          Recent advances in cDNA and oligonucleotide DNA arrays have made it possible to measure the abundance of mRNA transcripts for many genes simultaneously. The analysis of such experiments is nontrivial because of large data size and many levels of variation introduced at different stages of the experiments. The analysis is further complicated by the large differences that may exist among different probes used to interrogate the same gene. However, an attractive feature of high-density oligonucleotide arrays such as those produced by photolithography and inkjet technology is the standardization of chip manufacturing and hybridization process. As a result, probe-specific biases, although significant, are highly reproducible and predictable, and their adverse effect can be reduced by proper modeling and analysis methods. Here, we propose a statistical model for the probe-level data, and develop model-based estimates for gene expression indexes. We also present model-based methods for identifying and handling cross-hybridizing probes and contaminating array regions. Applications of these results will be presented elsewhere.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Electrochemotherapy – An easy, highly effective and safe treatment of cutaneous and subcutaneous metastases: Results of ESOPE (European Standard Operating Procedures of Electrochemotherapy) study

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Direct gene transfer into mouse muscle in vivo.

              RNA and DNA expression vectors containing genes for chloramphenicol acetyltransferase, luciferase, and beta-galactosidase were separately injected into mouse skeletal muscle in vivo. Protein expression was readily detected in all cases, and no special delivery system was required for these effects. The extent of expression from both the RNA and DNA constructs was comparable to that obtained from fibroblasts transfected in vitro under optimal conditions. In situ cytochemical staining for beta-galactosidase activity was localized to muscle cells following injection of the beta-galactosidase DNA vector. After injection of the DNA luciferase expression vector, luciferase activity was present in the muscle for at least 2 months.
                Bookmark

                Author and article information

                Journal
                BMC Mol Biol
                BMC Molecular Biology
                BioMed Central (London )
                1471-2199
                2007
                29 June 2007
                : 8
                : 56
                Affiliations
                [1 ]Laboratory of the Department of Oncology, 5405, Copenhagen University Hospital Herlev, Herlev Ringvej 75, DK-2730 Herlev, Denmark
                [2 ]Department of Dermato-Venereology KA-1502, Copenhagen University Hospital Gentofte, Niels Andersens Vej 65, DK-2900 Hellerup, Denmark
                [3 ]Department of Physiology and Biophysics, University of Aarhus, DK-8000 Aarhus C, Denmark
                Article
                1471-2199-8-56
                10.1186/1471-2199-8-56
                1925113
                17598924
                65be5550-76e2-4be2-b011-1c0b073264ac
                Copyright © 2007 Hojman et al; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 9 May 2007
                : 29 June 2007
                Categories
                Research Article

                Molecular biology
                Molecular biology

                Comments

                Comment on this article