23
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Coenzyme Q 10 Supplementation in Aging and Disease

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Coenzyme Q (CoQ) is an essential component of the mitochondrial electron transport chain and an antioxidant in plasma membranes and lipoproteins. It is endogenously produced in all cells by a highly regulated pathway that involves a mitochondrial multiprotein complex. Defects in either the structural and/or regulatory components of CoQ complex or in non-CoQ biosynthetic mitochondrial proteins can result in a decrease in CoQ concentration and/or an increase in oxidative stress. Besides CoQ 10 deficiency syndrome and aging, there are chronic diseases in which lower levels of CoQ 10 are detected in tissues and organs providing the hypothesis that CoQ 10 supplementation could alleviate aging symptoms and/or retard the onset of these diseases. Here, we review the current knowledge of CoQ 10 biosynthesis and primary CoQ 10 deficiency syndrome, and have collected published results from clinical trials based on CoQ 10 supplementation. There is evidence that supplementation positively affects mitochondrial deficiency syndrome and the symptoms of aging based mainly on improvements in bioenergetics. Cardiovascular disease and inflammation are alleviated by the antioxidant effect of CoQ 10. There is a need for further studies and clinical trials involving a greater number of participants undergoing longer treatments in order to assess the benefits of CoQ 10 treatment in metabolic syndrome and diabetes, neurodegenerative disorders, kidney diseases, and human fertility.

          Related collections

          Most cited references105

          • Record: found
          • Abstract: found
          • Article: not found

          Supercomplex assembly determines electron flux in the mitochondrial electron transport chain.

          The textbook description of mitochondrial respiratory complexes (RCs) views them as free-moving entities linked by the mobile carriers coenzyme Q (CoQ) and cytochrome c (cyt c). This model (known as the fluid model) is challenged by the proposal that all RCs except complex II can associate in supercomplexes (SCs). The proposed SCs are the respirasome (complexes I, III, and IV), complexes I and III, and complexes III and IV. The role of SCs is unclear, and their existence is debated. By genetic modulation of interactions between complexes I and III and III and IV, we show that these associations define dedicated CoQ and cyt c pools and that SC assembly is dynamic and organizes electron flux to optimize the use of available substrates.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Statin-associated myopathy.

            Statins (3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors) are associated with skeletal muscle complaints, including clinically important myositis and rhabdomyolysis, mild serum creatine kinase (CK) elevations, myalgia with and without elevated CK levels, muscle weakness, muscle cramps, and persistent myalgia and CK elevations after statin withdrawal. We performed a literature review to provide a clinical summary of statin-associated myopathy and discuss possible mediating mechanisms. We also update the US Food and Drug Administration (FDA) reports on statin-associated rhabdomyolysis. Articles on statin myopathy were identified via a PubMed search through November 2002 and articles on statin clinical trials, case series, and review articles were identified via a PubMed search through January 2003. Adverse event reports of statin-associated rhabdomyolysis were also collected from the FDA MEDWATCH database. The literature review found that reports of muscle problems during statin clinical trials are extremely rare. The FDA MEDWATCH Reporting System lists 3339 cases of statin-associated rhabdomyolysis reported between January 1, 1990, and March 31, 2002. Cerivastatin was the most commonly implicated statin. Few data are available regarding the frequency of less-serious events such as muscle pain and weakness, which may affect 1% to 5% of patients. The risk of rhabdomyolysis and other adverse effects with statin use can be exacerbated by several factors, including compromised hepatic and renal function, hypothyroidism, diabetes, and concomitant medications. Medications such as the fibrate gemfibrozil alter statin metabolism and increase statin plasma concentration. How statins injure skeletal muscle is not clear, although recent evidence suggests that statins reduce the production of small regulatory proteins that are important for myocyte maintenance.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Architecture of Human Mitochondrial Respiratory Megacomplex I2III2IV2.

              The respiratory megacomplex represents the highest-order assembly of respiratory chain complexes, and it allows mitochondria to respond to energy-requiring conditions. To understand its architecture, we examined the human respiratory chain megacomplex-I2III2IV2(MCI2III2IV2) with 140 subunits and a subset of associated cofactors using cryo-electron microscopy. The MCI2III2IV2forms a circular structure with the dimeric CIII located in the center, where it is surrounded by two copies each of CI and CIV. Two cytochrome c (Cyt.c) molecules are positioned to accept electrons on the surface of the c1state CIII dimer. Analyses indicate that CII could insert into the gaps between CI and CIV to form a closed ring, which we termed the electron transport chain supercomplex. The structure not only reveals the precise assignment of individual subunits of human CI and CIII, but also enables future in-depth analysis of the electron transport chain as a whole.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Physiol
                Front Physiol
                Front. Physiol.
                Frontiers in Physiology
                Frontiers Media S.A.
                1664-042X
                05 February 2018
                2018
                : 9
                : 44
                Affiliations
                [1] 1Centro Andaluz de Biología del Desarrollo and CIBERER, Instituto de Salud Carlos III, Universidad Pablo de Olavide-CSIC-JA , Sevilla, Spain
                [2] 2Translational Gerontology Branch, National Institute on Aging, National Institutes of Health , Baltimore, MD, United States
                Author notes

                Edited by: Paolo Bernardi, Università degli Studi di Padova, Italy

                Reviewed by: Amadou K. S. Camara, Medical College of Wisconsin, United States; Uwe Schlattner, Université Grenoble Alpes, France

                *Correspondence: Plácido Navas pnavas@ 123456upo.es

                This article was submitted to Mitochondrial Research, a section of the journal Frontiers in Physiology

                Article
                10.3389/fphys.2018.00044
                5807419
                29459830
                65c13b28-319a-44fa-bad2-1d00a6014933
                Copyright © 2018 Hernández-Camacho, Bernier, López-Lluch and Navas.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 02 October 2017
                : 12 January 2018
                Page count
                Figures: 2, Tables: 1, Equations: 0, References: 126, Pages: 11, Words: 8983
                Categories
                Physiology
                Review

                Anatomy & Physiology
                coenzyme q,aging,disease,mitochondria,antioxidant,coq deficiency
                Anatomy & Physiology
                coenzyme q, aging, disease, mitochondria, antioxidant, coq deficiency

                Comments

                Comment on this article