Blog
About

37
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      The Oxytocin Receptor System: Structure, Function, and Regulation

      1 , 1

      Physiological Reviews

      American Physiological Society

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The neurohypophysial peptide oxytocin (OT) and OT-like hormones facilitate reproduction in all vertebrates at several levels. The major site of OT gene expression is the magnocellular neurons of the hypothalamic paraventricular and supraoptic nuclei. In response to a variety of stimuli such as suckling, parturition, or certain kinds of stress, the processed OT peptide is released from the posterior pituitary into the systemic circulation. Such stimuli also lead to an intranuclear release of OT. Moreover, oxytocinergic neurons display widespread projections throughout the central nervous system. However, OT is also synthesized in peripheral tissues, e.g., uterus, placenta, amnion, corpus luteum, testis, and heart. The OT receptor is a typical class I G protein-coupled receptor that is primarily coupled via G q proteins to phospholipase C-β. The high-affinity receptor state requires both Mg 2+ and cholesterol, which probably function as allosteric modulators. The agonist-binding region of the receptor has been characterized by mutagenesis and molecular modeling and is different from the antagonist binding site. The function and physiological regulation of the OT system is strongly steroid dependent. However, this is, unexpectedly, only partially reflected by the promoter sequences in the OT receptor gene. The classical actions of OT are stimulation of uterine smooth muscle contraction during labor and milk ejection during lactation. While the essential role of OT for the milk let-down reflex has been confirmed in OT-deficient mice, OT's role in parturition is obviously more complex. Before the onset of labor, uterine sensitivity to OT markedly increases concomitant with a strong upregulation of OT receptors in the myometrium and, to a lesser extent, in the decidua where OT stimulates the release of PGF . Experiments with transgenic mice suggest that OT acts as a luteotrophic hormone opposing the luteolytic action of PGF . Thus, to initiate labor, it might be essential to generate sufficient PGF to overcome the luteotrophic action of OT in late gestation. OT also plays an important role in many other reproduction-related functions, such as control of the estrous cycle length, follicle luteinization in the ovary, and ovarian steroidogenesis. In the male, OT is a potent stimulator of spontaneous erections in rats and is involved in ejaculation. OT receptors have also been identified in other tissues, including the kidney, heart, thymus, pancreas, and adipocytes. For example, in the rat, OT is a cardiovascular hormone acting in concert with atrial natriuretic peptide to induce natriuresis and kaliuresis. The central actions of OT range from the modulation of the neuroendocrine reflexes to the establishment of complex social and bonding behaviors related to the reproduction and care of the offspring. OT exerts potent antistress effects that may facilitate pair bonds. Overall, the regulation by gonadal and adrenal steroids is one of the most remarkable features of the OT system and is, unfortunately, the least understood. One has to conclude that the physiological regulation of the OT system will remain puzzling as long as the molecular mechanisms of genomic and nongenomic actions of steroids have not been clarified.

          Related collections

          Most cited references 571

          • Record: found
          • Abstract: found
          • Article: not found

          Neuroendocrine perspectives on social attachment and love.

           C Sue Carter (1998)
          The purpose of this paper is to review existing behavioral and neuroendocrine perspectives on social attachment and love. Both love and social attachments function to facilitate reproduction, provide a sense of safety, and reduce anxiety or stress. Because social attachment is an essential component of love, understanding attachment formation is an important step toward identifying the neurobiological substrates of love. Studies of pair bonding in monogamous rodents, such as prairie voles, and maternal attachment in precocial ungulates offer the most accessible animal models for the study of mechanisms underlying selective social attachments and the propensity to develop social bonds. Parental behavior and sexual behavior, even in the absence of selective social behaviors, are associated with the concept of love; the analysis of reproductive behaviors, which is far more extensive than our understanding of social attachment, also suggests neuroendocrine substrates for love. A review of these literatures reveals a recurrent association between high levels of activity in the hypothalamic pituitary adrenal (HPA) axis and the subsequent expression of social behaviors and attachments. Positive social behaviors, including social bonds, may reduce HPA axis activity, while in some cases negative social interactions can have the opposite effect. Central neuropeptides, and especially oxytocin and vasopressin have been implicated both in social bonding and in the central control of the HPA axis. In prairie voles, which show clear evidence of pair bonds, oxytocin is capable of increasing positive social behaviors and both oxytocin and social interactions reduce activity in the HPA axis. Social interactions and attachment involve endocrine systems capable of decreasing HPA reactivity and modulating the autonomic nervous system, perhaps accounting for health benefits that are attributed to loving relationships.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The development of human benign prostatic hyperplasia with age.

            In this study we report the prevalence and growth rate of human benign prostatic hyperplasia with age by combining and analyzing data from 10 independent studies containing more than 1,000 prostates. The normal prostate reaches 20 plus or minus 6 gm. in men between 21 and 30 years old, and this weight remains essentially constant with increasing age unless benign prostatic hyperplasia develops. The prevalence of pathological benign prostatic hyperplasia is only 8 per cent at the fourth decade; however, 50 per cent of the male population has pathological benign prostatic hyperplasia when they are 51 to 60 years old. The average weight of a prostate that is recognized at autopsy to contain benign prostatic hyperplasia is 33 plus or minus 16 gm. Only 4 per cent of the prostates in men more than 70 years old reach sizes greater than 100 gm. An analysis of a logistic growth curve of benign prostatic hyperplasia lesions removed at prostatectomy indicates that the growth of benign prostatic hyperplasia is initiated probably before the patient is 30 years old. The early phase of benign prostatic hyperplasia growth (men between 31 and 50 years old) is characterized by a doubling time for the tumor weight of 4.5 years. In the mid phase of benign prostatic hyperplasia growth (men between 51 and 70 years old) the doubling time is 10 years, and increases to more than 100 years in patients beyond 70 years old.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Molecular tinkering of G protein-coupled receptors: an evolutionary success.

               J P Pin,  J Bockaert (1999)
              Among membrane-bound receptors, the G protein-coupled receptors (GPCRs) are certainly the most diverse. They have been very successful during evolution, being capable of transducing messages as different as photons, organic odorants, nucleotides, nucleosides, peptides, lipids and proteins. Indirect studies, as well as two-dimensional crystallization of rhodopsin, have led to a useful model of a common 'central core', composed of seven transmembrane helical domains, and its structural modifications during activation. There are at least six families of GPCRs showing no sequence similarity. They use an amazing number of different domains both to bind their ligands and to activate G proteins. The fine-tuning of their coupling to G proteins is regulated by splicing, RNA editing and phosphorylation. Some GPCRs have been found to form either homo- or heterodimers with a structurally different GPCR, but also with membrane-bound proteins having one transmembrane domain such as nina-A, odr-4 or RAMP, the latter being involved in their targeting, function and pharmacology. Finally, some GPCRs are unfaithful to G proteins and interact directly, via their C-terminal domain, with proteins containing PDZ and Enabled/VASP homology (EVH)-like domains.
                Bookmark

                Author and article information

                Journal
                Physiological Reviews
                Physiological Reviews
                American Physiological Society
                0031-9333
                1522-1210
                April 01 2001
                April 01 2001
                : 81
                : 2
                : 629-683
                Affiliations
                [1 ]Institut für Biochemie, Johannes Gutenberg Universität, Mainz, Germany
                10.1152/physrev.2001.81.2.629
                11274341
                © 2001

                Comments

                Comment on this article