1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      ZCCHC10 suppresses lung cancer progression and cisplatin resistance by attenuating MDM2-mediated p53 ubiquitination and degradation

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The activation of p53 tumor suppressor is essential for preventing abnormal cell proliferation and carcinogenesis. ZCCHC10 was previously identified as a potential p53-interacting partner in a yeast two-hybrid screen, but the interaction in cells and its subsequent influence on p53 activity and cancer development have not been investigated. In this paper, we demonstrate that ZCCHC10 expression levels are statistically lower in lung adenocarcinoma tissues than the corresponding adjacent noncancerous tissues, and decreased expression of ZCCHC10 mRNA predicts poorer survival of the patients. Ectopic expression of ZCCHC10 in lung cancer cells harboring wild-type p53 dramatically suppresses cell proliferation, colony formation, migration, invasion and cisplatin resistance in vitro, as well as tumor growth and metastasis in vivo. Conversely, knockdown of ZCCHC10 exerts opposite effects in the normal lung cell Beas-2b. However, ZCCHC10 has no influence on the biological behaviors of p53-null (H358) or p53-mutant (H1437) lung cancer cells. Mechanistically, ZCCHC10 binds and stabilizes p53 by disrupting the interaction between p53 and MDM2. The p53 inhibitor pifithrin-α attenuated the influences of ZCCHC10 overexpression on p53 pathway, cell cycle, apoptosis, and epithelial-mesenchymal transition, whereas the p53 activator Nutlin3 could reverse the effects of ZCCHC10 knockdown. Collectively, our results indicate that ZCCHC10 exerts its tumor-suppressive effects by stabilizing the p53 protein and can be used a potential prognostic marker and therapeutic target in lung adenocarcinoma.

          Related collections

          Most cited references26

          • Record: found
          • Abstract: found
          • Article: not found

          Impact of mutant p53 functional properties on TP53 mutation patterns and tumor phenotype: lessons from recent developments in the IARC TP53 database.

          The tumor suppressor gene TP53 is frequently mutated in human cancers. More than 75% of all mutations are missense substitutions that have been extensively analyzed in various yeast and human cell assays. The International Agency for Research on Cancer (IARC) TP53 database (www-p53.iarc.fr) compiles all genetic variations that have been reported in TP53. Here, we present recent database developments that include new annotations on the functional properties of mutant proteins, and we perform a systematic analysis of the database to determine the functional properties that contribute to the occurrence of mutational "hotspots" in different cancer types and to the phenotype of tumors. This analysis showed that loss of transactivation capacity is a key factor for the selection of missense mutations, and that difference in mutation frequencies is closely related to nucleotide substitution rates along TP53 coding sequence. An interesting new finding is that in patients with an inherited missense mutation, the age at onset of tumors was related to the functional severity of the mutation, mutations with total loss of transactivation activity being associated with earlier cancer onset compared to mutations that retain partial transactivation capacity. Furthermore, 80% of the most common mutants show a capacity to exert dominant-negative effect (DNE) over wild-type p53, compared to only 45% of the less frequent mutants studied, suggesting that DNE may play a role in shaping mutation patterns. These results provide new insights into the factors that shape mutation patterns and influence mutation phenotype, which may have clinical interest.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Oncoprotein MDM2 is a ubiquitin ligase E3 for tumor suppressor p53.

            The tumor suppressor p53 is degraded by the ubiquitin-proteasome system. p53 was polyubiquitinated in the presence of E1, UbcH5 as E2 and MDM2 oncoprotein. A ubiquitin molecule bound MDM2 through sulfhydroxy bond which is characteristic of ubiquitin ligase (E3)-ubiquitin binding. The cysteine residue in the carboxyl terminus of MDM2 was essential for the activity. These data suggest that the MDM2 protein, which is induced by p53, functions as a ubiquitin ligase, E3, in human papillomavirus-uninfected cells which do not have E6 protein.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Mdm2 is a RING finger-dependent ubiquitin protein ligase for itself and p53.

              Mdm2 has been shown to regulate p53 stability by targeting the p53 protein for proteasomal degradation. We now report that Mdm2 is a ubiquitin protein ligase (E3) for p53 and that its activity is dependent on its RING finger. Furthermore, we show that Mdm2 mediates its own ubiquitination in a RING finger-dependent manner, which requires no eukaryotic proteins other than ubiquitin-activating enzyme (E1) and an ubiquitin-conjugating enzyme (E2). It is apparent, therefore, that Mdm2 manifests an intrinsic capacity to mediate ubiquitination. Mutation of putative zinc coordination residues abrogated this activity, as did chelation of divalent cations. After cation chelation, the full activity could be restored by addition of zinc. We further demonstrate that the degradation of p53 and Mdm2 in cells requires additional potential zinc-coordinating residues beyond those required for the intrinsic activity of Mdm2 in vitro. Replacement of the Mdm2 RING with that of another protein (Praja1) reconstituted ubiquitination and proteasomal degradation of Mdm2. However, this RING was ineffective in ubiquitination and proteasomal targeting of p53, suggesting that there may be specificity at the level of the RING in the recognition of heterologous substrates.
                Bookmark

                Author and article information

                Contributors
                jlzhou@hunnu.edu.cn
                Journal
                Cell Death Dis
                Cell Death Dis
                Cell Death & Disease
                Nature Publishing Group UK (London )
                2041-4889
                28 May 2019
                28 May 2019
                June 2019
                : 10
                : 6
                : 414
                Affiliations
                [1 ]ISNI 0000 0001 0089 3695, GRID grid.411427.5, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, , Hunan Normal University, ; 36 Lushan Road, Changsha, Hunan China
                [2 ]ISNI 0000 0001 0089 3695, GRID grid.411427.5, Key Laboratory of Protein Chemistry and Developmental Biology of the Ministry of Education, College of Life Science, , Hunan Normal University, ; 36 Lushan Road, Changsha, Hunan China
                [3 ]ISNI 0000 0001 0379 7164, GRID grid.216417.7, Department of Thoracic Surgery, The Second Xiangya Hospital, , Central South University, ; 139 Renmin Road, Changsha, Hunan China
                Author information
                http://orcid.org/0000-0001-8640-5364
                Article
                1635
                10.1038/s41419-019-1635-9
                6538723
                31138778
                65cf5ddd-b172-40c2-86b1-3630054058ab
                © The Author(s) 2019

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 11 February 2019
                : 4 May 2019
                : 13 May 2019
                Funding
                Funded by: FundRef https://doi.org/10.13039/501100001809, National Natural Science Foundation of China (National Science Foundation of China);
                Award ID: 81071656, 81272318
                Award Recipient :
                Funded by: FundRef https://doi.org/10.13039/501100010083, Hunan Provincial Innovation Foundation for Postgraduate;
                Award ID: CX2018B301
                Award Recipient :
                Categories
                Article
                Custom metadata
                © The Author(s) 2019

                Cell biology
                tumour-suppressor proteins,ubiquitylation
                Cell biology
                tumour-suppressor proteins, ubiquitylation

                Comments

                Comment on this article