2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      A data-driven feature extraction framework for predicting the severity of condition of congestive heart failure patients.

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In this paper, we propose a novel methodology for utilizing disease diagnostic information to predict severity of condition for Congestive Heart Failure (CHF) patients. Our methodology relies on a novel, clustering-based, feature extraction framework using disease diagnostic information. To reduce the dimensionality we identify disease clusters using cooccurence frequencies. We then utilize these clusters as features to predict patient severity of condition. We build our clustering and feature extraction algorithm using the 2012 National Inpatient Sample (NIS), Healthcare Cost and Utilization Project (HCUP) which contains 7 million discharge records and ICD-9-CM codes. The proposed framework is tested on Ronald Reagan UCLA Medical Center Electronic Health Records (EHR) from 3041 patients. We compare our cluster-based feature set with another that incorporates the Charlson comorbidity score as a feature and demonstrate an accuracy improvement of up to 14% in the predictability of the severity of condition.

          Related collections

          Author and article information

          Journal
          Conf Proc IEEE Eng Med Biol Soc
          Conference proceedings : ... Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual Conference
          Institute of Electrical and Electronics Engineers (IEEE)
          1557-170X
          1557-170X
          2015
          : 2015
          Article
          10.1109/EMBC.2015.7318908
          26736808
          65d27dff-c17a-4d99-8fdd-30d1b9f86902
          History

          Comments

          Comment on this article