12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A Role of Corazonin Receptor in Larval-Pupal Transition and Pupariation in the Oriental Fruit Fly Bactrocera dorsalis (Hendel) (Diptera: Tephritidae)

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Corazonin (Crz) is a neuropeptide hormone, but also a neuropeptide modulator that is internally released within the CNS, and it has a widespread distribution in insects with diverse physiological functions. Here, we identified and cloned the cDNAs of Bactrocera dorsalis that encode Crz and its receptor CrzR. Mature BdCrz has 11 residues with a unique Ser 11 substitution (instead of the typical Asn) and a His in the evolutionary variable position 7. The BdCrzR cDNA encodes a putative protein of 608 amino acids with 7 putative transmembrane domains, typical for the structure of G-protein-coupled receptors. When expressed in Chinese hamster ovary (CHO) cells, the BdCrzR exhibited a high sensitivity and selectivity for Crz (EC 50 ≈ 52.5 nM). With qPCR, the developmental stage and tissue-specific expression profiles in B. dorsalis demonstrated that both BdCrz and BdCrzR were highly expressed in the larval stage, and BdCrzR peaked in 2-day-old 3rd-instar larvae, suggesting that the BdCrzR may play an important role in the larval-pupal transition behavior. Immunochemical localization confirmed the production of Crz in the central nervous system (CNS), specifically by a group of three neurons in the dorso-lateral protocerebrum and eight pairs of lateral neurons in the ventral nerve cord. qPCR analysis located the BdCrzR in both the CNS and epitracheal gland, containing the Inka cells. Importantly, dsRNA- BdCrzR-mediated gene-silencing caused a delay in larval-pupal transition and pupariation, and this phenomenon agreed with a delayed expression of tyrosine hydroxylase and dopa-decarboxylase genes. We speculate that CrzR-silencing blocked dopamine synthesis, resulting in the inhibition of pupariation and cuticular melanization. Finally, injection of Crz in head-ligated larvae could rescue the effects. These findings provide a new insight into the roles of Crz signaling pathway components in B. dorsalis and support an important role of CrzR in larval-pupal transition and pupariation behavior.

          Related collections

          Most cited references 40

          • Record: found
          • Abstract: found
          • Article: not found

          Drosophila neuropeptides in regulation of physiology and behavior.

          Studies of neuropeptide and peptide hormone signaling are coming of age in Drosophila due to rapid developments in molecular genetics approaches that overcome the difficulties caused by the small size of the fly. In addition we have genome-wide information on genes involved in peptide signaling, and growing pools of peptidomics data. A large number of different neuropeptides has been identified in a huge variety of neuron types in different parts of the Drosophila nervous system and cells in other locations. This review addresses questions related to peptidergic signaling in the Drosophila nervous system, especially how peptides regulate physiology and behavior during development and in the mature fly. We first summarize novel findings on neuropeptide precursor genes, processed bioactive peptides and their cognate receptors. Thereafter we provide an overview of the physiological and behavioral roles of peptide signaling in Drosophila. These roles include regulation of development, growth, feeding, metabolism, reproduction, homeostasis, and longevity, as well as neuromodulation in learning and memory, olfaction and locomotor control. The substrate of this signaling is the peptide products of about 42 precursor genes expressed in different combinations in a variety of neuronal circuits or that act as circulating hormones. Approximately 45 G-protein-coupled peptide receptors are known in Drosophila and for most of these the ligands have been identified. Functions of some peptides are better understood than others, and much work remains to reveal the spectrum of roles neuropeptides and peptide hormones play in the daily life of a fly. Copyright 2010 Elsevier Ltd. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Identification of G protein-coupled receptors for Drosophila PRXamide peptides, CCAP, corazonin, and AKH supports a theory of ligand-receptor coevolution.

             Y. Park,  Y-J Kim,  M Adams (2002)
            G-protein coupled receptors (GPCRs) are ancient, ubiquitous sensors vital to environmental and physiological signaling throughout organismal life. With the publication of the Drosophila genome, numerous "orphan" GPCRs have become available for functional analysis. Here we characterize two groups of GPCRs predicted as receptors for peptides with a C-terminal amino acid sequence motif consisting of -PRXamide (PRXa). Assuming ligand-receptor coevolution, two alternative hypotheses were constructed and tested. The insect PRXa peptides are evolutionarily related to the vertebrate peptide neuromedin U (NMU), or are related to arginine vasopressin (AVP), both of which have PRXa motifs. Seven Drosophila GPCRs related to receptors for NMU and AVP were cloned and expressed in Xenopus oocytes for functional analysis. Four Drosophila GPCRs in the NMU group (CG14575 [corrected], CG8795, CG9918, CG8784) are activated by insect PRXa pyrokinins, (-FXPRXamide), Cap2b-like peptides (-FPRXamide), or ecdysis triggering hormones (-PRXamide). Three Drosophila GPCRs in the vasopressin receptor group respond to crustacean cardioactive peptide (CCAP), corazonin, or adipokinetic hormone (AKH), none of which are PRXa peptides. These findings support a theory of coevolution for NMU and Drosophila PRXa peptides and their respective receptors.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Evaluation of endogenous references for gene expression profiling in different tissues of the oriental fruit fly Bactrocera dorsalis (Diptera: Tephritidae)

              Background Quantitative real-time reverse transcriptase PCR (RT-qPCR) has been widely used for quantification of mRNA as a way to determine key genes involved in different biological processes. For accurate gene quantification analysis, normalization of RT-qPCR data is absolutely essential. To date, normalization is most frequently achieved by the use of internal controls, often referred to as reference genes. However, several studies have shown that the reference genes used for the quantification of mRNA expression can be affected by the experimental set-up or cell type resulting in variation of the expression level of these key genes. Therefore, the evaluation of reference genes is critical for gene expression profiling, which is often neglected in gene expression studies of insects. For this purpose, ten candidate reference genes were investigated in three different tissues (midgut, Malpighian tubules, and fat body) of the oriental fruit fly, Bactrocera dorsalis (Hendel). Results Two different programs, geNorm and Normfinder, were used to analyze the data. According to geNorm, α-TUB + ACT5 are the most appropriate reference genes for gene expression profiling across the three different tissues in the female flies, while ACT3 + α-TUB are considered as the best for males. Furthermore, we evaluated the stability of the candidate reference genes to determine the sexual differences in the same tissue. In the midgut and Malpighian tubules, ACT2 + α-TUB are the best choice for both males and females. However, α-TUB + ACT1 are the best pair for fat body. Meanwhile, the results calculated by Normfinder are quite the same as the results with geNorm; α-TUB is always one of the most stable genes in each sample validated by the two programs. Conclusions In this study, we validated the suitable reference genes for gene expression profiling in different tissues of B. dorsalis. Moreover, appropriate reference genes were selected out for gene expression profiling of the same tissues taking the sexual differences into consideration. This work not only formed a solid basis for future gene expression study in B. dorsalis, but also will serve as a resource to screen reference genes for gene expression studies in any other insects.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Physiol
                Front Physiol
                Front. Physiol.
                Frontiers in Physiology
                Frontiers Media S.A.
                1664-042X
                15 February 2017
                2017
                : 8
                Affiliations
                1Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University Chongqing, China
                2Department of Crop Protection, Ghent University Ghent, Belgium
                Author notes

                Edited by: Arash Zibaee, University of Gilan, Iran

                Reviewed by: Christian Wegener, University of Würzburg, Germany; Herman A. Dierick, Baylor College of Medicine, USA

                *Correspondence: Jin-Jun Wang wangjinjun@ 123456swu.edu.cn

                This article was submitted to Invertebrate Physiology, a section of the journal Frontiers in Physiology

                †These authors have contributed equally to this work.

                Article
                10.3389/fphys.2017.00077
                5309247
                Copyright © 2017 Hou, Jiang, Gui, Chen, Wei, Li, Wang and Smagghe.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                Page count
                Figures: 10, Tables: 2, Equations: 0, References: 49, Pages: 14, Words: 8461
                Categories
                Physiology
                Original Research

                Comments

                Comment on this article