10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Biological technologies for the remediation of co-contaminated soil

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references127

          • Record: found
          • Abstract: found
          • Article: not found

          Use of iron oxide nanomaterials in wastewater treatment: a review.

          Nowadays there is a continuously increasing worldwide concern for the development of wastewater treatment technologies. The utilization of iron oxide nanomaterials has received much attention due to their unique properties, such as extremely small size, high surface-area-to-volume ratio, surface modifiability, excellent magnetic properties and great biocompatibility. A range of environmental clean-up technologies have been proposed in wastewater treatment which applied iron oxide nanomaterials as nanosorbents and photocatalysts. Moreover, iron oxide based immobilization technology for enhanced removal efficiency tends to be an innovative research point. This review outlined the latest applications of iron oxide nanomaterials in wastewater treatment, and gaps which limited their large-scale field applications. The outlook for potential applications and further challenges, as well as the likely fate of nanomaterials discharged to the environment were discussed. Copyright © 2012 Elsevier B.V. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Potential of siderophore-producing bacteria for improving heavy metal phytoextraction.

            Phytoremediation holds promise for in situ treatment of heavy metal contaminated soils. Recently, the benefits of combining siderophore-producing bacteria (SPB) with plants for metal removal from contaminated soils have been demonstrated. Metal-resistant SPB play an important role in the successful survival and growth of plants in contaminated soils by alleviating the metal toxicity and supplying the plant with nutrients, particularly iron. Furthermore, bacterial siderophores are able to bind metals other than iron and thus enhance their bioavailability in the rhizosphere of plants. Overall, an increase in plant growth and metal uptake will further enhance the effectiveness of phytoremediation processes. Here, we highlight the diversity and ecology of metal resistant SPB and discuss their potential role in phytoremediation of heavy metals.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Plant growth promoting rhizobacteria and endophytes accelerate phytoremediation of metalliferous soils.

              Technogenic activities (industrial-plastic, textiles, microelectronics, wood preservatives; mining-mine refuse, tailings, smelting; agrochemicals-chemical fertilizers, farm yard manure, pesticides; aerosols-pyrometallurgical and automobile exhausts; biosolids-sewage sludge, domestic waste; fly ash-coal combustion products) are the primary sources of heavy metal contamination and pollution in the environment in addition to geogenic sources. During the last two decades, bioremediation has emerged as a potential tool to clean up the metal-contaminated/polluted environment. Exclusively derived processes by plants alone (phytoremediation) are time-consuming. Further, high levels of pollutants pose toxicity to the remediating plants. This situation could be ameliorated and accelerated by exploring the partnership of plant-microbe, which would improve the plant growth by facilitating the sequestration of toxic heavy metals. Plants can bioconcentrate (phytoextraction) as well as bioimmobilize or inactivate (phytostabilization) toxic heavy metals through in situ rhizospheric processes. The mobility and bioavailability of heavy metal in the soil, particularly at the rhizosphere where root uptake or exclusion takes place, are critical factors that affect phytoextraction and phytostabilization. Developing new methods for either enhancing (phytoextraction) or reducing the bioavailability of metal contaminants in the rhizosphere (phytostabilization) as well as improving plant establishment, growth, and health could significantly speed up the process of bioremediation techniques. In this review, we have highlighted the role of plant growth promoting rhizo- and/or endophytic bacteria in accelerating phytoremediation derived benefits in extensive tables and elaborate schematic sketches. Copyright © 2010 Elsevier Inc. All rights reserved.
                Bookmark

                Author and article information

                Journal
                Critical Reviews in Biotechnology
                Critical Reviews in Biotechnology
                Informa UK Limited
                0738-8551
                1549-7801
                April 20 2017
                November 17 2017
                April 21 2017
                November 17 2017
                : 37
                : 8
                : 1062-1076
                Affiliations
                [1 ] College of Environmental Science and Engineering, Hunan University, Changsha, PR China;
                [2 ] Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, PR China;
                [3 ] Changjiang River Scientific Research Institute, Wuhan, PR China
                Article
                10.1080/07388551.2017.1304357
                28427272
                65ee56fd-fb12-4c49-b8ad-e4c412b9d604
                © 2017
                History

                Comments

                Comment on this article