6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Hiding neutrino mass in modified gravity cosmologies

      , , , , ,
      Journal of Cosmology and Astroparticle Physics
      IOP Publishing

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references27

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Modified Gravity and Cosmology

          In this review we present a thoroughly comprehensive survey of recent work on modified theories of gravity and their cosmological consequences. Amongst other things, we cover General Relativity, Scalar-Tensor, Einstein-Aether, and Bimetric theories, as well as TeVeS, f(R), general higher-order theories, Horava-Lifschitz gravity, Galileons, Ghost Condensates, and models of extra dimensions including Kaluza-Klein, Randall-Sundrum, DGP, and higher co-dimension braneworlds. We also review attempts to construct a Parameterised Post-Friedmannian formalism, that can be used to constrain deviations from General Relativity in cosmology, and that is suitable for comparison with data on the largest scales. These subjects have been intensively studied over the past decade, largely motivated by rapid progress in the field of observational cosmology that now allows, for the first time, precision tests of fundamental physics on the scale of the observable Universe. The purpose of this review is to provide a reference tool for researchers and students in cosmology and gravitational physics, as well as a self-contained, comprehensive and up-to-date introduction to the subject as a whole.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Efficient Computation of CMB anisotropies in closed FRW models

            We implement the efficient line of sight method to calculate the anisotropy and polarization of the cosmic microwave background for scalar and tensor modes in almost-Friedmann-Robertson-Walker models with positive spatial curvature. We present new results for the polarization power spectra in such models.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Generalized G-inflation: Inflation with the most general second-order field equations

              We study generalized Galileons as a framework to develop the most general single-field inflation models ever, Generalized G-inflation, containing yet further generalization of G-inflation, as well as previous examples such as k-inflation, extended inflation, and new Higgs inflation as special cases. We investigate the background and perturbation evolution in this model, calculating the most general quadratic actions for tensor and scalar cosmological perturbations to give the stability criteria and the power spectra of primordial fluctuations. It is pointed out in the Appendix that the Horndeski theory and the generalized Galileons are equivalent. In particular, even the non-minimal coupling to the Gauss-Bonnet term is included in the generalized Galileons in a non-trivial manner.
                Bookmark

                Author and article information

                Journal
                Journal of Cosmology and Astroparticle Physics
                J. Cosmol. Astropart. Phys.
                IOP Publishing
                1475-7516
                February 01 2017
                February 23 2017
                : 2017
                : 02
                : 043
                Article
                10.1088/1475-7516/2017/02/043
                65ef0462-c2b6-4513-8f2a-fb4b4b3b6f3a
                © 2017

                http://iopscience.iop.org/info/page/text-and-data-mining

                http://iopscience.iop.org/page/copyright

                History

                Comments

                Comment on this article