26
views
0
recommends
+1 Recommend
2 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Surprisingly rich repertoire of Wnt genes in the demosponge Halisarca dujardini

      research-article
      , , ,
      BMC Evolutionary Biology
      BioMed Central

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Wnt proteins are secreted signalling molecules found in all animal phyla. In bilaterian animals, including humans, Wnt proteins play key roles in development, maintenance of homeostasis and regeneration. While Wnt gene repertoires and roles are strongly conserved between cnidarians and bilaterians, Wnt genes from basal metazoans (sponges, ctenophores, placozoans) are difficult or impossible to assign to the bilaterian + cnidarian orthologous groups. Moreover, dramatic differences in Wnt numbers among basal metazoan exist, with only three present in the genome of Amphimedon queenslandica, a demosponge, and 21 in the genome of Sycon ciliatum, a calcisponge. To gain insight into the ancestral Wnt repertoire and function, we have chosen to investigate Wnt genes in Halisarca dujardini, a demosponge with relatively well described development and regeneration, and a very distant phylogenetic relationship to Amphimedon.

          Results

          Here we describe generation of a eukaryotic contamination-free transcriptome of Halisarca dujardini, and analysis of Wnt genes repertoire and expression in this species. We have identified ten Wnt genes, with only one orthologous to Amphimedon Wnt, and six appearing to be a result of a lineage specific expansion. Expression analysis carried out by in situ hybridization of adults and larvae revealed that two Halisarca Wnts are expressed in nested domains in the posterior half of the larvae, and six along the adult body axis, with two specific to the osculum. Strikingly, expression of one of the Wnt genes was elevated in the region undergoing regeneration.

          Conclusions

          Our results demonstrated that the three Poriferan lineages (Demospongiae, Calcarea and Homoloscleromorpha) are characterized by highly diverse Wnt gene repertoires which do not display higher similarity to each other than they do to the non-sponge (i.e. ctenophore, cnidarian and bilaterian) repertoires. This is in striking contrast to the uniform Wnt repertoires in Cnidarians and Bilaterians, suggesting that the Wnt family composition became “fixed” only in the last common ancestor of Cnidarians and Bilaterians. In contrast, expression of Wnt genes in the apical region of sponge adults and the posterior region of sponge larvae suggests conservation of the Wnt role in axial patterning across the animal kingdom.

          Electronic supplementary material

          The online version of this article (doi:10.1186/s12862-016-0700-6) contains supplementary material, which is available to authorized users.

          Related collections

          Most cited references30

          • Record: found
          • Abstract: found
          • Article: not found

          MRBAYES: Bayesian inference of phylogenetic trees.

          The program MRBAYES performs Bayesian inference of phylogeny using a variant of Markov chain Monte Carlo. MRBAYES, including the source code, documentation, sample data files, and an executable, is available at http://brahms.biology.rochester.edu/software.html.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The Trichoplax genome and the nature of placozoans.

            As arguably the simplest free-living animals, placozoans may represent a primitive metazoan form, yet their biology is poorly understood. Here we report the sequencing and analysis of the approximately 98 million base pair nuclear genome of the placozoan Trichoplax adhaerens. Whole-genome phylogenetic analysis suggests that placozoans belong to a 'eumetazoan' clade that includes cnidarians and bilaterians, with sponges as the earliest diverging animals. The compact genome shows conserved gene content, gene structure and synteny in relation to the human and other complex eumetazoan genomes. Despite the apparent cellular and organismal simplicity of Trichoplax, its genome encodes a rich array of transcription factor and signalling pathway genes that are typically associated with diverse cell types and developmental processes in eumetazoans, motivating further searches for cryptic cellular complexity and/or as yet unobserved life history stages.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              An LDL-receptor-related protein mediates Wnt signalling in mice.

              Wnt genes comprise a large family of secreted polypeptides that are expressed in spatially and tissue-restricted patterns during vertebrate embryonic development. Mutational analysis in mice has shown the importance of Wnts in controlling diverse developmental processes such as patterning of the body axis, central nervous system and limbs, and the regulation of inductive events during organogenesis. Although many components of the Wnt signalling pathway have been identified, little is known about how Wnts and their cognate Frizzled receptors signal to downstream effector molecules. Here we present evidence that a new member of the low-density lipoprotein (LDL)-receptor-related protein family, LRP6 (ref. 3), is critical for Wnt signalling in mice. Embryos homozygous for an insertion mutation in the LRP6 gene exhibit developmental defects that are a striking composite of those caused by mutations in individual Wnt genes. Furthermore, we show a genetic enhancement of a Wnt mutant phenotype in mice lacking one functional copy of LRP6. Together, our results support a broad role for LRP6 in the transduction of several Wnt signals in mammals.
                Bookmark

                Author and article information

                Contributors
                maja.adamska@anu.edu.au
                Journal
                BMC Evol Biol
                BMC Evol. Biol
                BMC Evolutionary Biology
                BioMed Central (London )
                1471-2148
                10 June 2016
                10 June 2016
                2016
                : 16
                : 123
                Affiliations
                [ ]Department of Embryology, Faculty of Biology, Saint-Petersburg State University, Saint-Petersburg, Russia
                [ ]Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen, Norway
                [ ]Present Address: Research School of Biology, Australian National University, Canberra, Australia
                [ ]Present Address: Institut Méditerranéen de Biodiversité et d’Ecologie Marine et Continentale (IMBE), CNRS, Aix Marseille Université, IRD, Avignon Université, Marseille, France
                Author information
                http://orcid.org/0000-0002-4223-8450
                Article
                700
                10.1186/s12862-016-0700-6
                4902976
                27287511
                65f13c96-7f20-44f8-b67b-f4a8fd28603e
                © The Author(s). 2016

                Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 6 April 2016
                : 5 June 2016
                Funding
                Funded by: FundRef http://dx.doi.org/10.13039/501100002261, Russian Foundation for Basic Research;
                Award ID: 13-04-01084
                Award Recipient :
                Funded by: FundRef http://dx.doi.org/10.13039/501100002261, Russian Foundation for Basic Research;
                Award ID: 16-04-00084
                Award Recipient :
                Funded by: FundRef http://dx.doi.org/10.13039/501100004285, Saint Petersburg State University;
                Award ID: 1.38.209.2014
                Award Recipient :
                Categories
                Research Article
                Custom metadata
                © The Author(s) 2016

                Evolutionary Biology
                Evolutionary Biology

                Comments

                Comment on this article