15
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Historical Prediction Modeling Approach for Estimating Long-Term Concentrations of PM 2.5 in Cohort Studies before the 1999 Implementation of Widespread Monitoring

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Introduction:

          Recent cohort studies have used exposure prediction models to estimate the association between long-term residential concentrations of fine particulate matter (PM2.5) and health. Because these prediction models rely on PM2.5 monitoring data, predictions for times before extensive spatial monitoring present a challenge to understanding long-term exposure effects. The U.S. Environmental Protection Agency (EPA) Federal Reference Method (FRM) network for PM2.5 was established in 1999.

          Objectives:

          We evaluated a novel statistical approach to produce high-quality exposure predictions from 1980 through 2010 in the continental United States for epidemiological applications.

          Methods:

          We developed spatio-temporal prediction models using geographic predictors and annual average PM2.5 data from 1999 through 2010 from the FRM and the Interagency Monitoring of Protected Visual Environments (IMPROVE) networks. Temporal trends before 1999 were estimated by using a) extrapolation based on PM2.5 data in FRM/IMPROVE, b) PM2.5 sulfate data in the Clean Air Status and Trends Network, and c) visibility data across the Weather Bureau Army Navy network. We validated the models using PM2.5 data collected before 1999 from IMPROVE, California Air Resources Board dichotomous sampler monitoring (CARB dichot), the Children’s Health Study (CHS), and the Inhalable Particulate Network (IPN).

          Results:

          In our validation using pre-1999 data, the prediction model performed well across three trend estimation approaches when validated using IMPROVE and CHS data (R2 = 0.84–0.91) with lower R2 values in early years. Model performance using CARB dichot and IPN data was worse (R2 = 0.00–0.85) most likely because of fewer monitoring sites and inconsistent sampling methods.

          Conclusions:

          Our prediction modeling approach will allow health effects estimation associated with long-term exposures to PM2.5 over extended time periods ≤ 30 years.

          Citation:

          Kim SY, Olives C, Sheppard L, Sampson PD, Larson TV, Keller JP, Kaufman JD. 2017. Historical prediction modeling approach for estimating long-term concentrations of PM2.5 in cohort studies before the 1999 implementation of widespread monitoring. Environ Health Perspect 125:38–46; http://dx.doi.org/10.1289/EHP131

          Related collections

          Most cited references49

          • Record: found
          • Abstract: found
          • Article: found

          Effects of long-term exposure to air pollution on natural-cause mortality: an analysis of 22 European cohorts within the multicentre ESCAPE project

          Few studies on long-term exposure to air pollution and mortality have been reported from Europe. Within the multicentre European Study of Cohorts for Air Pollution Effects (ESCAPE), we aimed to investigate the association between natural-cause mortality and long-term exposure to several air pollutants. We used data from 22 European cohort studies, which created a total study population of 367,251 participants. All cohorts were general population samples, although some were restricted to one sex only. With a strictly standardised protocol, we assessed residential exposure to air pollutants as annual average concentrations of particulate matter (PM) with diameters of less than 2.5 μm (PM2.5), less than 10 μm (PM10), and between 10 μm and 2.5 μm (PMcoarse), PM2.5 absorbance, and annual average concentrations of nitrogen oxides (NO2 and NOx), with land use regression models. We also investigated two traffic intensity variables-traffic intensity on the nearest road (vehicles per day) and total traffic load on all major roads within a 100 m buffer. We did cohort-specific statistical analyses using confounder models with increasing adjustment for confounder variables, and Cox proportional hazards models with a common protocol. We obtained pooled effect estimates through a random-effects meta-analysis. The total study population consisted of 367,251 participants who contributed 5,118,039 person-years at risk (average follow-up 13.9 years), of whom 29,076 died from a natural cause during follow-up. A significantly increased hazard ratio (HR) for PM2.5 of 1.07 (95% CI 1.02-1.13) per 5 μg/m(3) was recorded. No heterogeneity was noted between individual cohort effect estimates (I(2) p value=0.95). HRs for PM2.5 remained significantly raised even when we included only participants exposed to pollutant concentrations lower than the European annual mean limit value of 25 μg/m(3) (HR 1.06, 95% CI 1.00-1.12) or below 20 μg/m(3) (1.07, 1.01-1.13). Long-term exposure to fine particulate air pollution was associated with natural-cause mortality, even within concentration ranges well below the present European annual mean limit value. European Community's Seventh Framework Program (FP7/2007-2011). Copyright © 2014 Elsevier Ltd. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Development of Land Use Regression models for PM(2.5), PM(2.5) absorbance, PM(10) and PM(coarse) in 20 European study areas; results of the ESCAPE project.

            Land Use Regression (LUR) models have been used increasingly for modeling small-scale spatial variation in air pollution concentrations and estimating individual exposure for participants of cohort studies. Within the ESCAPE project, concentrations of PM(2.5), PM(2.5) absorbance, PM(10), and PM(coarse) were measured in 20 European study areas at 20 sites per area. GIS-derived predictor variables (e.g., traffic intensity, population, and land-use) were evaluated to model spatial variation of annual average concentrations for each study area. The median model explained variance (R(2)) was 71% for PM(2.5) (range across study areas 35-94%). Model R(2) was higher for PM(2.5) absorbance (median 89%, range 56-97%) and lower for PM(coarse) (median 68%, range 32- 81%). Models included between two and five predictor variables, with various traffic indicators as the most common predictors. Lower R(2) was related to small concentration variability or limited availability of predictor variables, especially traffic intensity. Cross validation R(2) results were on average 8-11% lower than model R(2). Careful selection of monitoring sites, examination of influential observations and skewed variable distributions were essential for developing stable LUR models. The final LUR models are used to estimate air pollution concentrations at the home addresses of participants in the health studies involved in ESCAPE.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Exposure assessment for estimation of the global burden of disease attributable to outdoor air pollution.

              Ambient air pollution is associated with numerous adverse health impacts. Previous assessments of global attributable disease burden have been limited to urban areas or by coarse spatial resolution of concentration estimates. Recent developments in remote sensing, global chemical-transport models, and improvements in coverage of surface measurements facilitate virtually complete spatially resolved global air pollutant concentration estimates. We combined these data to generate global estimates of long-term average ambient concentrations of fine particles (PM(2.5)) and ozone at 0.1° × 0.1° spatial resolution for 1990 and 2005. In 2005, 89% of the world's population lived in areas where the World Health Organization Air Quality Guideline of 10 μg/m(3) PM(2.5) (annual average) was exceeded. Globally, 32% of the population lived in areas exceeding the WHO Level 1 Interim Target of 35 μg/m(3), driven by high proportions in East (76%) and South (26%) Asia. The highest seasonal ozone levels were found in North and Latin America, Europe, South and East Asia, and parts of Africa. Between 1990 and 2005 a 6% increase in global population-weighted PM(2.5) and a 1% decrease in global population-weighted ozone concentrations was apparent, highlighted by increased concentrations in East, South, and Southeast Asia and decreases in North America and Europe. Combined with spatially resolved population distributions, these estimates expand the evaluation of the global health burden associated with outdoor air pollution.
                Bookmark

                Author and article information

                Journal
                Environ Health Perspect
                Environ. Health Perspect
                EHP
                Environmental Health Perspectives
                National Institute of Environmental Health Sciences
                0091-6765
                1552-9924
                24 June 2016
                January 2017
                : 125
                : 1
                : 38-46
                Affiliations
                [1 ]Institute of Health and Environment, Seoul National University, Seoul, Korea
                [2 ]Department of Environmental and Occupational Health Sciences,
                [3 ]Department of Biostatistics,
                [4 ]Department of Statistics,
                [5 ]Department of Civil and Environmental Engineering,
                [6 ]Department of Epidemiology, and
                [7 ]Department of Medicine, University of Washington, Seattle, Seattle, Washington, USA
                Author notes
                []Address correspondence to J.D. Kaufman, Department of Environmental and Occupational Health Sciences, University of Washington, 4225 Roosevelt Way NE, Seattle, WA 98105 USA. Telephone: (206) 616-3501. joelk@ 123456uw.edu
                Article
                EHP131
                10.1289/EHP131
                5226688
                27340825
                65f2f566-7561-4ee7-81a4-7bb97f05d5af

                Publication of EHP lies in the public domain and is therefore without copyright. All text from EHP may be reprinted freely. Use of materials published in EHP should be acknowledged (for example, “Reproduced with permission from Environmental Health Perspectives”); pertinent reference information should be provided for the article from which the material was reproduced. Articles from EHP, especially the News section, may contain photographs or illustrations copyrighted by other commercial organizations or individuals that may not be used without obtaining prior approval from the holder of the copyright.

                History
                : 6 August 2015
                : 5 March 2016
                : 18 May 2016
                Categories
                Research

                Public health
                Public health

                Comments

                Comment on this article