32
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Localizing Genes to Cerebellar Layers by Classifying ISH Images

      research-article
      , , *
      PLoS Computational Biology
      Public Library of Science

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Gene expression controls how the brain develops and functions. Understanding control processes in the brain is particularly hard since they involve numerous types of neurons and glia, and very little is known about which genes are expressed in which cells and brain layers. Here we describe an approach to detect genes whose expression is primarily localized to a specific brain layer and apply it to the mouse cerebellum. We learn typical spatial patterns of expression from a few markers that are known to be localized to specific layers, and use these patterns to predict localization for new genes. We analyze images of in-situ hybridization (ISH) experiments, which we represent using histograms of local binary patterns (LBP) and train image classifiers and gene classifiers for four layers of the cerebellum: the Purkinje, granular, molecular and white matter layer. On held-out data, the layer classifiers achieve accuracy above 94% (AUC) by representing each image at multiple scales and by combining multiple image scores into a single gene-level decision. When applied to the full mouse genome, the classifiers predict specific layer localization for hundreds of new genes in the Purkinje and granular layers. Many genes localized to the Purkinje layer are likely to be expressed in astrocytes, and many others are involved in lipid metabolism, possibly due to the unusual size of Purkinje cells.

          Author Summary

          The way gene expression is spatially distributed across the brain reflects the function and micro-structure of neural tissues. Measuring these patterns is hard because brain tissues are composed of many types of neurons and glia cells, and average gene expression across a region mixes transcripts from many different cells. We present here an approach to identify genes that are primarily expressed in specific brain layers or cell types, based on analyzing high resolution in-situ hybridization images. By learning the spatial patterns of a few known cell markers, we annotate the expression patterns of hundreds of new genes, and predict the layers and cell types they are expressed in.

          Related collections

          Most cited references16

          • Record: found
          • Abstract: found
          • Article: not found

          Performance evaluation of local descriptors.

          In this paper, we compare the performance of descriptors computed for local interest regions, as, for example, extracted by the Harris-Affine detector. Many different descriptors have been proposed in the literature. It is unclear which descriptors are more appropriate and how their performance depends on the interest region detector. The descriptors should be distinctive and at the same time robust to changes in viewing conditions as well as to errors of the detector. Our evaluation uses as criterion recall with respect to precision and is carried out for different image transformations. We compare shape context, steerable filters, PCA-SIFT, differential invariants, spin images, SIFT, complex filters, moment invariants, and cross-correlation for different types of interest regions. We also propose an extension of the SIFT descriptor and show that it outperforms the original method. Furthermore, we observe that the ranking of the descriptors is mostly independent of the interest region detector and that the SIFT-based descriptors perform best. Moments and steerable filters show the best performance among the low dimensional descriptors.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Temporal dynamics and genetic control of transcription in the human prefrontal cortex.

            Previous investigations have combined transcriptional and genetic analyses in human cell lines, but few have applied these techniques to human neural tissue. To gain a global molecular perspective on the role of the human genome in cortical development, function and ageing, we explore the temporal dynamics and genetic control of transcription in human prefrontal cortex in an extensive series of post-mortem brains from fetal development through ageing. We discover a wave of gene expression changes occurring during fetal development which are reversed in early postnatal life. One half-century later in life, this pattern of reversals is mirrored in ageing and in neurodegeneration. Although we identify thousands of robust associations of individual genetic polymorphisms with gene expression, we also demonstrate that there is no association between the total extent of genetic differences between subjects and the global similarity of their transcriptional profiles. Hence, the human genome produces a consistent molecular architecture in the prefrontal cortex, despite millions of genetic differences across individuals and races. To enable further discovery, this entire data set is freely available (from Gene Expression Omnibus: accession GSE30272; and dbGaP: accession phs000417.v1.p1) and can also be interrogated via a biologist-friendly stand-alone application (http://www.libd.org/braincloud).
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Molecular mechanisms of axon guidance.

              Axons are guided along specific pathways by attractive and repulsive cues in the extracellular environment. Genetic and biochemical studies have led to the identification of highly conserved families of guidance molecules, including netrins, Slits, semaphorins, and ephrins. Guidance cues steer axons by regulating cytoskeletal dynamics in the growth cone through signaling pathways that are still only poorly understood. Elaborate regulatory mechanisms ensure that a given cue elicits the right response from the right axons at the right time but is otherwise ignored. With such regulatory mechanisms in place, a relatively small number of guidance factors can be used to generate intricate patterns of neuronal wiring.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Comput Biol
                PLoS Comput. Biol
                plos
                ploscomp
                PLoS Computational Biology
                Public Library of Science (San Francisco, USA )
                1553-734X
                1553-7358
                December 2012
                December 2012
                20 December 2012
                : 8
                : 12
                : e1002790
                Affiliations
                [1]The Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat Gan, Israel
                Duke University, United States of America
                Author notes

                The authors have declared that no competing interests exist.

                Conceived and designed the experiments: LK NL GC. Performed the experiments: LK NL. Analyzed the data: LK NL GC. Wrote the paper: LK NL GC.

                Article
                PCOMPBIOL-D-11-01966
                10.1371/journal.pcbi.1002790
                3527225
                23284274
                65f96589-88d9-40cf-be14-3fb782ffef9f
                Copyright @ 2012

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 22 December 2011
                : 31 August 2012
                Page count
                Pages: 13
                Funding
                GC was supported by the Israeli Science Foundation grant #1001/08, and by a Marie Curie reintegration grant #PIRG06-GA-2009-256566. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology
                Computational Biology
                Molecular Genetics
                Gene Expression
                Systems Biology

                Quantitative & Systems biology
                Quantitative & Systems biology

                Comments

                Comment on this article