59
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Dynamics of ESCRT protein recruitment during retroviral assembly

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The ESCRT (Endosomal Sorting Complex Required for Transport) complexes and associated proteins mediate membrane scission reactions, such as multi-vesicular body formation, the terminal stages of cytokinesis and retroviral particle release. These proteins are believed to be sequentially recruited to the site of membrane scission, and then complexes are disassembled by the ATPase Vps4A. However these events have never been observed in living cells and their dynamics are unknown. By quantifying the recruitment of several ESCRT and associated proteins during the assembly of two retroviruses, we show that Alix progressively accumulated at viral assembly sites, coincident with the accumulation of the major viral structural protein, Gag, and was not recycled after assembly. In contrast, ESCRT-III and Vps4A were only transiently recruited when the accumulation of Gag was complete. These data suggest that the rapid and transient recruitment of proteins that act late in the ESCRT pathway and carry out membrane fission is triggered by prior and progressive accumulation of proteins that bridge viral proteins and the late-acting ESCRT proteins.

          Related collections

          Most cited references24

          • Record: found
          • Abstract: found
          • Article: not found

          Molecular Mechanism of Multivesicular Body Biogenesis by ESCRT Complexes

          When internalized receptors and other cargo are destined for lysosomal degradation, they are ubiquitinated and sorted by the ESCRT complexes 0, I, II, and III into multivesicular bodies. Multivesicular bodies are formed when cargo-rich patches of the limiting membrane of endosomes bud inward by an unknown mechanism and are then cleaved to yield cargo-bearing intralumenal vesicles. The biogenesis of multivesicular bodies was reconstituted and visualized using giant unilamellar vesicles, fluorescent ESCRT-0, I, II, and III complexes, and a membrane-tethered fluorescent ubiquitin fusion as a model cargo. ESCRT-0 forms domains of clustered cargo but does not deform membranes. ESCRT-I and II in combination deform the membrane into buds, in which cargo is confined. ESCRT-I and II localize to the bud necks, and recruit ESCRT-0-ubiquitin domains to the buds. ESCRT-III subunits localize to the bud neck and efficiently cleave the buds to form intralumenal vesicles. Intralumenal vesicles produced in this reaction contain the model cargo but are devoid of ESCRTs. The observations explain how the ESCRTs direct membrane budding and scission from the cytoplasmic side of the bud without being consumed in the reaction.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Membrane scission by the ESCRT-III complex.

            The endosomal sorting complex required for transport (ESCRT) system is essential for multivesicular body biogenesis, in which cargo sorting is coupled to the invagination and scission of intralumenal vesicles. The ESCRTs are also needed for budding of enveloped viruses including human immunodeficiency virus 1, and for membrane abscission in cytokinesis. In Saccharomyces cerevisiae, ESCRT-III consists of Vps20, Snf7, Vps24 and Vps2 (also known as Did4), which assemble in that order and require the ATPase Vps4 for their disassembly. In this study, the ESCRT-III-dependent budding and scission of intralumenal vesicles into giant unilamellar vesicles was reconstituted and visualized by fluorescence microscopy. Here we show that three subunits of ESCRT-III, Vps20, Snf7 and Vps24, are sufficient to detach intralumenal vesicles. Vps2, the ESCRT-III subunit responsible for recruiting Vps4, and the ATPase activity of Vps4 were required for ESCRT-III recycling and supported additional rounds of budding. The minimum set of ESCRT-III and Vps4 proteins capable of multiple cycles of vesicle detachment corresponds to the ancient set of ESCRT proteins conserved from archaea to animals.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The emerging shape of the ESCRT machinery.

              The past two years have seen an explosion in the structural understanding of the endosomal sorting complex required for transport (ESCRT) machinery that facilitates the trafficking of ubiquitylated proteins from endosomes to lysosomes via multivesicular bodies (MVBs). A common organization of all ESCRTs is a rigid core attached to flexibly connected modules that recognize other components of the MVB pathway. Several previously unsuspected key links between multiple ESCRT subunits, phospholipids and ubiquitin have now been elucidated, which, together with the detailed morphological analyses of ESCRT-depletion phenotypes, provide new insights into the mechanism of MVB biogenesis.
                Bookmark

                Author and article information

                Journal
                100890575
                21417
                Nat Cell Biol
                Nature cell biology
                1465-7392
                1476-4679
                8 December 2011
                10 March 2011
                April 2011
                22 December 2011
                : 13
                : 4
                : 394-401
                Affiliations
                [1 ]Aaron Diamond AIDS Research Center, Laboratory of Retrovirology, Rockefeller University, New York 10065 NY, USA
                [2 ]Howard Hughes Medical Institute, Rockefeller University, New York 10065 NY, USA
                [3 ]Laboratory of Cellular Biophysics, Rockefeller University, New York 10065 NY, USA
                Author notes
                Correspondence and requests for materials should be addressed to PB. ( pbienias@ 123456adarc.org ) and SMS ( simon@ 123456rockefeller.edu )
                Article
                nihpa263532
                10.1038/ncb2207
                3245320
                21394083
                65fb4c91-b70f-4abd-8d2e-11d85112805b

                Users may view, print, copy, download and text and data- mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use: http://www.nature.com/authors/editorial_policies/license.html#terms

                History
                Funding
                Funded by: National Institute of General Medical Sciences : NIGMS
                Award ID: R01 GM087977-03 || GM
                Funded by: National Institute of Allergy and Infectious Diseases Extramural Activities : NIAID
                Award ID: R01 AI089844-02 || AI
                Funded by: National Institute of Allergy and Infectious Diseases Extramural Activities : NIAID
                Award ID: R01 AI089844-01A1 || AI
                Categories
                Article

                Cell biology
                Cell biology

                Comments

                Comment on this article