7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Mechanism of Cis-Inhibition of PolyQ Fibrillation by PolyP: PPII Oligomers and the Hydrophobic Effect

      , , ,
      Biophysical Journal
      Elsevier BV

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          PolyQ peptides teeter between polyproline II (PPII) and beta-sheet conformations. In tandem polyQ-polyP peptides, the polyP segment tips the balance toward PPII, increasing the threshold number of Gln residues needed for fibrillation. To investigate the mechanism of cis-inhibition by flanking polyP segments on polyQ fibrillation, we examined short polyQ, polyP, and tandem polyQ-polyP peptides. These polyQ peptides have only three glutamines and cannot form beta-sheet fibrils. We demonstrate that polyQ-polyP peptides form small, soluble oligomers at high concentrations (as shown by size exclusion chromatography and diffusion coefficient measurements) with PPII structure (as shown by circular dichroism spectroscopy and (3)J(HN-C alpha) constants of Gln residues from constant time correlation spectroscopy NMR). Nuclear Overhauser effect spectroscopy and molecular modeling suggest that self-association of these peptides occurs as a result of both hydrophobic and steric effects. Pro side chains present three methylenes to solvent, favoring self-association of polyP through the hydrophobic effect. Gln side chains, with two methylene groups, can adopt a conformation similar to that of Pro side chains, also permitting self-association through the hydrophobic effect. Furthermore, steric clashes between Gln and Pro side chains to the C-terminal side of the polyQ segment favor adoption of the PPII-like structure in the polyQ segment. The conformational adaptability of the polyQ segment permits the cis-inhibitory effect of polyP segments on fibrillation by the polyQ segments in proteins such as huntingtin.

          Related collections

          Author and article information

          Journal
          Biophysical Journal
          Biophysical Journal
          Elsevier BV
          00063495
          October 2009
          October 2009
          : 97
          : 8
          : 2295-2305
          Article
          10.1016/j.bpj.2009.07.062
          2764074
          19843462
          66053682-8ee3-4047-be44-30cc88a22075
          © 2009

          https://www.elsevier.com/tdm/userlicense/1.0/

          https://www.elsevier.com/open-access/userlicense/1.0/

          History

          Comments

          Comment on this article