25
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Small particles, big impacts: A review of the diverse applications of nanofluids

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references275

          • Record: found
          • Abstract: found
          • Article: not found

          Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance.

          Metal nanoshells are a class of nanoparticles with tunable optical resonances. In this article, an application of this technology to thermal ablative therapy for cancer is described. By tuning the nanoshells to strongly absorb light in the near infrared, where optical transmission through tissue is optimal, a distribution of nanoshells at depth in tissue can be used to deliver a therapeutic dose of heat by using moderately low exposures of extracorporeally applied near-infrared (NIR) light. Human breast carcinoma cells incubated with nanoshells in vitro were found to have undergone photothermally induced morbidity on exposure to NIR light (820 nm, 35 W/cm2), as determined by using a fluorescent viability stain. Cells without nanoshells displayed no loss in viability after the same periods and conditions of NIR illumination. Likewise, in vivo studies under magnetic resonance guidance revealed that exposure to low doses of NIR light (820 nm, 4 W/cm2) in solid tumors treated with metal nanoshells reached average maximum temperatures capable of inducing irreversible tissue damage (DeltaT = 37.4 +/- 6.6 degrees C) within 4-6 min. Controls treated without nanoshells demonstrated significantly lower average temperatures on exposure to NIR light (DeltaT < 10 degrees C). These findings demonstrated good correlation with histological findings. Tissues heated above the thermal damage threshold displayed coagulation, cell shrinkage, and loss of nuclear staining, which are indicators of irreversible thermal damage. Control tissues appeared undamaged.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Toward solar fuels: photocatalytic conversion of carbon dioxide to hydrocarbons.

              The past several decades have seen a significant rise in atmospheric carbon dioxide levels resulting from the combustion of hydrocarbon fuels. A solar energy based technology to recycle carbon dioxide into readily transportable hydrocarbon fuel (i.e., a solar fuel) would help reduce atmospheric CO2 levels and partly fulfill energy demands within the present hydrocarbon based fuel infrastructure. We review the present status of carbon dioxide conversion techniques, with particular attention to a recently developed photocatalytic process to convert carbon dioxide and water vapor into hydrocarbon fuels using sunlight.
                Bookmark

                Author and article information

                Journal
                Journal of Applied Physics
                Journal of Applied Physics
                AIP Publishing
                0021-8979
                1089-7550
                January 07 2013
                January 07 2013
                : 113
                : 1
                : 011301
                Article
                10.1063/1.4754271
                6606bedf-a0c3-41ab-bc05-b7b98bed9440
                © 2013
                History

                Comments

                Comment on this article