50
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Investments in respiratory infectious disease research 1997–2010: a systematic analysis of UK funding

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Objectives

          Respiratory infections are responsible for a large global burden of disease. We assessed the public and philanthropic investments awarded to UK institutions for respiratory infectious disease research to identify areas of underinvestment. We aimed to identify projects and categorise them by pathogen, disease and position along the research and development value chain.

          Setting

          The UK.

          Participants

          Institutions that host and carry out infectious disease research.

          Primary and secondary outcome measures

          The total amount spent and number of studies with a focus on several different respiratory pathogens or diseases, and to correlate these against the global burden of disease; also the total amount spent and number of studies relating to the type of science, the predominant funder in each category and the mean and median award size.

          Results

          We identified 6165 infectious disease studies with a total investment of £2·6 billion. Respiratory research received £419 million (16.1%) across 1192 (19.3%) studies. The Wellcome Trust provided greatest investment (£135.2 million; 32.3%). Tuberculosis received £155 million (37.1%), influenza £80 million (19.1%) and pneumonia £27.8 million (6.6%). Despite high burden, there was relatively little investment in vaccine-preventable diseases including diphtheria (£0.1 million, 0.03%), measles (£5.0 million, 1.2%) and drug-resistant tuberculosis. There were 802 preclinical studies (67.3%) receiving £273 million (65.2%), while implementation research received £81 million (19.3%) across 274 studies (23%). There were comparatively few phase I–IV trials or product development studies. Global health research received £68.3 million (16.3%). Relative investment was strongly correlated with 2010 disease burden.

          Conclusions

          The UK predominantly funds preclinical science. Tuberculosis is the most studied respiratory disease. The high global burden of pneumonia-related disease warrants greater investment than it has historically received. Other priority areas include antimicrobial resistance (particularly within tuberculosis), economics and proactive investments for emerging infectious threats.

          Related collections

          Most cited references25

          • Record: found
          • Abstract: found
          • Article: not found

          Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the Global Burden of Disease Study 2010.

          Reliable and timely information on the leading causes of death in populations, and how these are changing, is a crucial input into health policy debates. In the Global Burden of Diseases, Injuries, and Risk Factors Study 2010 (GBD 2010), we aimed to estimate annual deaths for the world and 21 regions between 1980 and 2010 for 235 causes, with uncertainty intervals (UIs), separately by age and sex. We attempted to identify all available data on causes of death for 187 countries from 1980 to 2010 from vital registration, verbal autopsy, mortality surveillance, censuses, surveys, hospitals, police records, and mortuaries. We assessed data quality for completeness, diagnostic accuracy, missing data, stochastic variations, and probable causes of death. We applied six different modelling strategies to estimate cause-specific mortality trends depending on the strength of the data. For 133 causes and three special aggregates we used the Cause of Death Ensemble model (CODEm) approach, which uses four families of statistical models testing a large set of different models using different permutations of covariates. Model ensembles were developed from these component models. We assessed model performance with rigorous out-of-sample testing of prediction error and the validity of 95% UIs. For 13 causes with low observed numbers of deaths, we developed negative binomial models with plausible covariates. For 27 causes for which death is rare, we modelled the higher level cause in the cause hierarchy of the GBD 2010 and then allocated deaths across component causes proportionately, estimated from all available data in the database. For selected causes (African trypanosomiasis, congenital syphilis, whooping cough, measles, typhoid and parathyroid, leishmaniasis, acute hepatitis E, and HIV/AIDS), we used natural history models based on information on incidence, prevalence, and case-fatality. We separately estimated cause fractions by aetiology for diarrhoea, lower respiratory infections, and meningitis, as well as disaggregations by subcause for chronic kidney disease, maternal disorders, cirrhosis, and liver cancer. For deaths due to collective violence and natural disasters, we used mortality shock regressions. For every cause, we estimated 95% UIs that captured both parameter estimation uncertainty and uncertainty due to model specification where CODEm was used. We constrained cause-specific fractions within every age-sex group to sum to total mortality based on draws from the uncertainty distributions. In 2010, there were 52·8 million deaths globally. At the most aggregate level, communicable, maternal, neonatal, and nutritional causes were 24·9% of deaths worldwide in 2010, down from 15·9 million (34·1%) of 46·5 million in 1990. This decrease was largely due to decreases in mortality from diarrhoeal disease (from 2·5 to 1·4 million), lower respiratory infections (from 3·4 to 2·8 million), neonatal disorders (from 3·1 to 2·2 million), measles (from 0·63 to 0·13 million), and tetanus (from 0·27 to 0·06 million). Deaths from HIV/AIDS increased from 0·30 million in 1990 to 1·5 million in 2010, reaching a peak of 1·7 million in 2006. Malaria mortality also rose by an estimated 19·9% since 1990 to 1·17 million deaths in 2010. Tuberculosis killed 1·2 million people in 2010. Deaths from non-communicable diseases rose by just under 8 million between 1990 and 2010, accounting for two of every three deaths (34·5 million) worldwide by 2010. 8 million people died from cancer in 2010, 38% more than two decades ago; of these, 1·5 million (19%) were from trachea, bronchus, and lung cancer. Ischaemic heart disease and stroke collectively killed 12·9 million people in 2010, or one in four deaths worldwide, compared with one in five in 1990; 1·3 million deaths were due to diabetes, twice as many as in 1990. The fraction of global deaths due to injuries (5·1 million deaths) was marginally higher in 2010 (9·6%) compared with two decades earlier (8·8%). This was driven by a 46% rise in deaths worldwide due to road traffic accidents (1·3 million in 2010) and a rise in deaths from falls. Ischaemic heart disease, stroke, chronic obstructive pulmonary disease (COPD), lower respiratory infections, lung cancer, and HIV/AIDS were the leading causes of death in 2010. Ischaemic heart disease, lower respiratory infections, stroke, diarrhoeal disease, malaria, and HIV/AIDS were the leading causes of years of life lost due to premature mortality (YLLs) in 2010, similar to what was estimated for 1990, except for HIV/AIDS and preterm birth complications. YLLs from lower respiratory infections and diarrhoea decreased by 45-54% since 1990; ischaemic heart disease and stroke YLLs increased by 17-28%. Regional variations in leading causes of death were substantial. Communicable, maternal, neonatal, and nutritional causes still accounted for 76% of premature mortality in sub-Saharan Africa in 2010. Age standardised death rates from some key disorders rose (HIV/AIDS, Alzheimer's disease, diabetes mellitus, and chronic kidney disease in particular), but for most diseases, death rates fell in the past two decades; including major vascular diseases, COPD, most forms of cancer, liver cirrhosis, and maternal disorders. For other conditions, notably malaria, prostate cancer, and injuries, little change was noted. Population growth, increased average age of the world's population, and largely decreasing age-specific, sex-specific, and cause-specific death rates combine to drive a broad shift from communicable, maternal, neonatal, and nutritional causes towards non-communicable diseases. Nevertheless, communicable, maternal, neonatal, and nutritional causes remain the dominant causes of YLLs in sub-Saharan Africa. Overlaid on this general pattern of the epidemiological transition, marked regional variation exists in many causes, such as interpersonal violence, suicide, liver cancer, diabetes, cirrhosis, Chagas disease, African trypanosomiasis, melanoma, and others. Regional heterogeneity highlights the importance of sound epidemiological assessments of the causes of death on a regular basis. Bill & Melinda Gates Foundation. Copyright © 2012 Elsevier Ltd. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Disability-adjusted life years (DALYs) for 291 diseases and injuries in 21 regions, 1990-2010: a systematic analysis for the Global Burden of Disease Study 2010.

            Measuring disease and injury burden in populations requires a composite metric that captures both premature mortality and the prevalence and severity of ill-health. The 1990 Global Burden of Disease study proposed disability-adjusted life years (DALYs) to measure disease burden. No comprehensive update of disease burden worldwide incorporating a systematic reassessment of disease and injury-specific epidemiology has been done since the 1990 study. We aimed to calculate disease burden worldwide and for 21 regions for 1990, 2005, and 2010 with methods to enable meaningful comparisons over time. We calculated DALYs as the sum of years of life lost (YLLs) and years lived with disability (YLDs). DALYs were calculated for 291 causes, 20 age groups, both sexes, and for 187 countries, and aggregated to regional and global estimates of disease burden for three points in time with strictly comparable definitions and methods. YLLs were calculated from age-sex-country-time-specific estimates of mortality by cause, with death by standardised lost life expectancy at each age. YLDs were calculated as prevalence of 1160 disabling sequelae, by age, sex, and cause, and weighted by new disability weights for each health state. Neither YLLs nor YLDs were age-weighted or discounted. Uncertainty around cause-specific DALYs was calculated incorporating uncertainty in levels of all-cause mortality, cause-specific mortality, prevalence, and disability weights. Global DALYs remained stable from 1990 (2·503 billion) to 2010 (2·490 billion). Crude DALYs per 1000 decreased by 23% (472 per 1000 to 361 per 1000). An important shift has occurred in DALY composition with the contribution of deaths and disability among children (younger than 5 years of age) declining from 41% of global DALYs in 1990 to 25% in 2010. YLLs typically account for about half of disease burden in more developed regions (high-income Asia Pacific, western Europe, high-income North America, and Australasia), rising to over 80% of DALYs in sub-Saharan Africa. In 1990, 47% of DALYs worldwide were from communicable, maternal, neonatal, and nutritional disorders, 43% from non-communicable diseases, and 10% from injuries. By 2010, this had shifted to 35%, 54%, and 11%, respectively. Ischaemic heart disease was the leading cause of DALYs worldwide in 2010 (up from fourth rank in 1990, increasing by 29%), followed by lower respiratory infections (top rank in 1990; 44% decline in DALYs), stroke (fifth in 1990; 19% increase), diarrhoeal diseases (second in 1990; 51% decrease), and HIV/AIDS (33rd in 1990; 351% increase). Major depressive disorder increased from 15th to 11th rank (37% increase) and road injury from 12th to 10th rank (34% increase). Substantial heterogeneity exists in rankings of leading causes of disease burden among regions. Global disease burden has continued to shift away from communicable to non-communicable diseases and from premature death to years lived with disability. In sub-Saharan Africa, however, many communicable, maternal, neonatal, and nutritional disorders remain the dominant causes of disease burden. The rising burden from mental and behavioural disorders, musculoskeletal disorders, and diabetes will impose new challenges on health systems. Regional heterogeneity highlights the importance of understanding local burden of disease and setting goals and targets for the post-2015 agenda taking such patterns into account. Because of improved definitions, methods, and data, these results for 1990 and 2010 supersede all previously published Global Burden of Disease results. Bill & Melinda Gates Foundation. Copyright © 2012 Elsevier Ltd. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Global burden of acute lower respiratory infections due to respiratory syncytial virus in young children: a systematic review and meta-analysis

              Summary Background The global burden of disease attributable to respiratory syncytial virus (RSV) remains unknown. We aimed to estimate the global incidence of and mortality from episodes of acute lower respiratory infection (ALRI) due to RSV in children younger than 5 years in 2005. Methods We estimated the incidence of RSV-associated ALRI in children younger than 5 years, stratified by age, using data from a systematic review of studies published between January, 1995, and June, 2009, and ten unpublished population-based studies. We estimated possible boundaries for RSV-associated ALRI mortality by combining case fatality ratios with incidence estimates from hospital-based reports from published and unpublished studies and identifying studies with population-based data for RSV seasonality and monthly ALRI mortality. Findings In 2005, an estimated 33·8 (95% CI 19·3–46·2) million new episodes of RSV-associated ALRI occurred worldwide in children younger than 5 years (22% of ALRI episodes), with at least 3·4 (2·8–4·3) million episodes representing severe RSV-associated ALRI necessitating hospital admission. We estimated that 66 000–199 000 children younger than 5 years died from RSV-associated ALRI in 2005, with 99% of these deaths occurring in developing countries. Incidence and mortality can vary substantially from year to year in any one setting. Interpretation Globally, RSV is the most common cause of childhood ALRI and a major cause of admission to hospital as a result of severe ALRI. Mortality data suggest that RSV is an important cause of death in childhood from ALRI, after pneumococcal pneumonia and Haemophilus influenzae type b. The development of novel prevention and treatment strategies should be accelerated as a priority. Funding WHO; Bill & Melinda Gates Foundation.
                Bookmark

                Author and article information

                Journal
                BMJ Open
                BMJ Open
                bmjopen
                bmjopen
                BMJ Open
                BMJ Publishing Group (BMA House, Tavistock Square, London, WC1H 9JR )
                2044-6055
                2014
                26 March 2014
                : 4
                : 3
                : e004600
                Affiliations
                [1 ]Research Department of Infection and Population Health, University College London , London, UK
                [2 ]London School of Hygiene & Tropical Medicine , London, UK
                [3 ]Department of Respiratory Medicine, Royal Free London NHS Foundation Trust, University College London , London, UK
                [4 ]Harvard School of Public Health, Harvard University , Boston, Massachusetts, USA
                [5 ]Imperial College Business School and the Faculty of Medicine, Imperial College London , London, UK
                Author notes
                [Correspondence to ] Michael G Head; m.head@ 123456ucl.ac.uk or michael.g.head@ 123456gmail.com
                Article
                bmjopen-2013-004600
                10.1136/bmjopen-2013-004600
                3975787
                24670431
                66119bca-6397-4c5e-b242-7531142f1c21
                Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions

                This is an Open Access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 3.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/3.0/

                History
                : 2 December 2013
                : 21 February 2014
                : 26 February 2014
                Categories
                Infectious Diseases
                Research
                1506
                1706
                1731

                Medicine
                respiratory,investments,financing,policy
                Medicine
                respiratory, investments, financing, policy

                Comments

                Comment on this article