Blog
About

19
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Optimizing User Association and Spectrum Allocation in HetNets: A Utility Perspective

      Preprint

      , , ,

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The joint user association and spectrum allocation problem is studied for multi-tier heterogeneous networks (HetNets) in both downlink and uplink in the interference-limited regime. Users are associated with base-stations (BSs) based on the biased downlink received power. Spectrum is either shared or orthogonally partitioned among the tiers. This paper models the placement of BSs in different tiers as spatial point processes and adopts stochastic geometry to derive the theoretical mean proportionally fair utility of the network based on the coverage rate. By formulating and solving the network utility maximization problem, the optimal user association bias factors and spectrum partition ratios are analytically obtained for the multi-tier network. The resulting analysis reveals that the downlink and uplink user associations do not have to be symmetric. For uplink under spectrum sharing, if all tiers have the same target signal-to-interference ratio (SIR), distance-based user association is shown to be optimal under a variety of path loss and power control settings. For both downlink and uplink, under orthogonal spectrum partition, it is shown that the optimal proportion of spectrum allocated to each tier should match the proportion of users associated with that tier. Simulations validate the analytical results. Under typical system parameters, simulation results suggest that spectrum partition performs better for downlink in terms of utility, while spectrum sharing performs better for uplink with power control.

          Related collections

          Most cited references 13

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          A Tractable Approach to Coverage and Rate in Cellular Networks

           ,  ,   (2011)
          Cellular networks are usually modeled by placing the base stations on a grid, with mobile users either randomly scattered or placed deterministically. These models have been used extensively but suffer from being both highly idealized and not very tractable, so complex system-level simulations are used to evaluate coverage/outage probability and rate. More tractable models have long been desirable. We develop new general models for the multi-cell signal-to-interference-plus-noise ratio (SINR) using stochastic geometry. Under very general assumptions, the resulting expressions for the downlink SINR CCDF (equivalent to the coverage probability) involve quickly computable integrals, and in some practical special cases can be simplified to common integrals (e.g., the Q-function) or even to simple closed-form expressions. We also derive the mean rate, and then the coverage gain (and mean rate loss) from static frequency reuse. We compare our coverage predictions to the grid model and an actual base station deployment, and observe that the proposed model is pessimistic (a lower bound on coverage) whereas the grid model is optimistic, and that both are about equally accurate. In addition to being more tractable, the proposed model may better capture the increasingly opportunistic and dense placement of base stations in future networks.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Modeling and Analysis of K-Tier Downlink Heterogeneous Cellular Networks

             ,  ,   (2012)
            Cellular networks are in a major transition from a carefully planned set of large tower-mounted base-stations (BSs) to an irregular deployment of heterogeneous infrastructure elements that often additionally includes micro, pico, and femtocells, as well as distributed antennas. In this paper, we develop a tractable, flexible, and accurate model for a downlink heterogeneous cellular network (HCN) consisting of K tiers of randomly located BSs, where each tier may differ in terms of average transmit power, supported data rate and BS density. Assuming a mobile user connects to the strongest candidate BS, the resulting Signal-to-Interference-plus-Noise-Ratio (SINR) is greater than 1 when in coverage, Rayleigh fading, we derive an expression for the probability of coverage (equivalently outage) over the entire network under both open and closed access, which assumes a strikingly simple closed-form in the high SINR regime and is accurate down to -4 dB even under weaker assumptions. For external validation, we compare against an actual LTE network (for tier 1) with the other K-1 tiers being modeled as independent Poisson Point Processes. In this case as well, our model is accurate to within 1-2 dB. We also derive the average rate achieved by a randomly located mobile and the average load on each tier of BSs. One interesting observation for interference-limited open access networks is that at a given SINR, adding more tiers and/or BSs neither increases nor decreases the probability of coverage or outage when all the tiers have the same target-SINR.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Stochastic geometry and random graphs for the analysis and design of wireless networks

                Bookmark

                Author and article information

                Journal
                2014-12-18
                Article
                10.1109/JSAC.2015.2417011
                1412.5731

                http://arxiv.org/licenses/nonexclusive-distrib/1.0/

                Custom metadata
                Accepted with minor revision for publication in the IEEE Journal on Selected Areas in Communications, Special Issue on Recent Advances in Heterogeneous Cellular Networks
                cs.NI cs.IT math.IT

                Comments

                Comment on this article