15
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      The B1-agonist [des-Arg10]-kallidin activates transcription factor NF-kappaB and induces homologous upregulation of the bradykinin B1-receptor in cultured human lung fibroblasts.

      The Journal of clinical investigation
      Amino Acid Sequence, Cell Line, Cholera Toxin, pharmacology, DNA-Binding Proteins, metabolism, Fibroblasts, Humans, Inflammation, physiopathology, Interleukin-1, Kallidin, agonists, analogs & derivatives, Lung, drug effects, Molecular Sequence Data, NF-kappa B, Proline, Pyrrolidines, RNA, Messenger, Receptor, Bradykinin B1, Receptors, Bradykinin, Thiocarbamates, Transcriptional Activation, Up-Regulation, Virulence Factors, Bordetella

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The bradykinin B1-receptor is strongly upregulated under chronic inflammatory conditions. However, the mechanism and reason are not known. Because a better understanding of the mechanism of the upregulation will help in understanding its potential importance in inflammation, we have studied the molecular mechanism of B1-receptor upregulation in cultured human lung fibroblasts (IMR 90) in response to IL-1beta and the B1-agonist [des-Arg10]-kallidin. We show that treatment of human IMR 90 cells by IL-1beta stimulates the expression of both B1-receptor mRNA and protein. The latter was studied by Western blot analysis using antipeptide antibodies directed against the COOH-terminal part of the human B1-receptor. We furthermore report the novel observation that the B1-receptor is upregulated by its own agonist which was completely blocked by the specific B1-antagonist [des-Arg10-Leu9]-kallidin, indicating an upregulation entirely mediated through cell surface B1-receptors. The increased population of B1-receptors was functionally coupled as exemplified by an enhancement of the B1-agonist induced increase in free cytosolic calcium. Upregulation by the B1-agonist was blocked by a specific protein kinase C inhibitor. B1-agonist-induced upregulation was correlated to the induction of transcription factor nuclear factor kappaB (NF-kappaB) which efficiently bound to the NF-kappaB-like sequence located in the promoter region of the human B1-receptor gene. This correlation was further confirmed by reporter gene assays which showed that this NF-kappaB-like sequence, in the B1-receptor promoter context, could contribute to IL-1beta and DLBK-induced B1-receptor transcription activation, and by the effect of NF-kappaB inhibitor pyrrolidinedithiocarbamate which diminished both B1-receptor upregulation and NF-kappaB activation. NF-kappaB is now recognized as a key inflammatory mediator which is activated by the B1-agonist but which is also involved in B1-receptor upregulation.

          Related collections

          Author and article information

          Comments

          Comment on this article