22
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Diurnal rhythms in the human urine metabolome during sleep and total sleep deprivation

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Understanding how metabolite levels change over the 24 hour day is of crucial importance for clinical and epidemiological studies. Additionally, the association between sleep deprivation and metabolic disorders such as diabetes and obesity requires investigation into the links between sleep and metabolism. Here, we characterise time-of-day variation and the effects of sleep deprivation on urinary metabolite profiles. Healthy male participants (n = 15) completed an in-laboratory study comprising one 24 h sleep/wake cycle prior to 24 h of continual wakefulness under highly controlled environmental conditions. Urine samples were collected over set 2–8 h intervals and analysed by 1H NMR spectroscopy. Significant changes were observed with respect to both time of day and sleep deprivation. Of 32 identified metabolites, 7 (22%) exhibited cosine rhythmicity over at least one 24 h period; 5 exhibiting a cosine rhythm on both days. Eight metabolites significantly increased during sleep deprivation compared with sleep (taurine, formate, citrate, 3-indoxyl sulfate, carnitine, 3-hydroxyisobutyrate, TMAO and acetate) and 8 significantly decreased (dimethylamine, 4-DTA, creatinine, ascorbate, 2-hydroxyisobutyrate, allantoin, 4-DEA, 4-hydroxyphenylacetate). These data indicate that sampling time, the presence or absence of sleep and the response to sleep deprivation are highly relevant when identifying biomarkers in urinary metabolic profiling studies.

          Related collections

          Most cited references29

          • Record: found
          • Abstract: found
          • Article: not found

          Sleep duration predicts cardiovascular outcomes: a systematic review and meta-analysis of prospective studies.

          Aims To assess the relationship between duration of sleep and morbidity and mortality from coronary heart disease (CHD), stroke, and total cardiovascular disease (CVD). Methods and results We performed a systematic search of publications using MEDLINE (1966-2009), EMBASE (from 1980), the Cochrane Library, and manual searches without language restrictions. Studies were included if they were prospective, follow-up >3 years, had duration of sleep at baseline, and incident cases of CHD, stroke, or CVD. Relative risks (RR) and 95% confidence interval (CI) were pooled using a random-effect model. Overall, 15 studies (24 cohort samples) included 474 684 male and female participants (follow-up 6.9-25 years), and 16 067 events (4169 for CHD, 3478 for stroke, and 8420 for total CVD). Sleep duration was assessed by questionnaire and incident cases through certification and event registers. Short duration of sleep was associated with a greater risk of developing or dying of CHD (RR 1.48, 95% CI 1.22-1.80, P < 0.0001), stroke (1.15, 1.00-1.31, P = 0.047), but not total CVD (1.03, 0.93-1.15, P = 0.52) with no evidence of publication bias (P = 0.95, P = 0.30, and P = 0.46, respectively). Long duration of sleep was also associated with a greater risk of CHD (1.38, 1.15-1.66, P = 0.0005), stroke (1.65, 1.45-1.87, P < 0.0001), and total CVD (1.41, 1.19-1.68, P < 0.0001) with no evidence of publication bias (P = 0.92, P = 0.96, and P = 0.79, respectively). Conclusion Both short and long duration of sleep are predictors, or markers, of cardiovascular outcomes.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Serum indoxyl sulfate is associated with vascular disease and mortality in chronic kidney disease patients.

            As a major component of uremic syndrome, cardiovascular disease is largely responsible for the high mortality observed in chronic kidney disease (CKD). Preclinical studies have evidenced an association between serum levels of indoxyl sulfate (IS, a protein-bound uremic toxin) and vascular alterations. The aim of this study is to investigate the association between serum IS, vascular calcification, vascular stiffness, and mortality in a cohort of CKD patients. One-hundred and thirty-nine patients (mean +/- SD age: 67 +/- 12; 60% male) at different stages of CKD (8% at stage 2, 26.5% at stage 3, 26.5% at stage 4, 7% at stage 5, and 32% at stage 5D) were enrolled. Baseline IS levels presented an inverse relationship with renal function and a direct relationship with aortic calcification and pulse wave velocity. During the follow-up period (605 +/- 217 d), 25 patients died, mostly because of cardiovascular events (n = 18). In crude survival analyses, the highest IS tertile was a powerful predictor of overall and cardiovascular mortality (P = 0.001 and 0.012, respectively). The predictive power of IS for death was maintained after adjustment for age, gender, diabetes, albumin, hemoglobin, phosphate, and aortic calcification. The study presented here indicates that IS may have a significant role in the vascular disease and higher mortality observed in CKD patients.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Human metabolic phenotype diversity and its association with diet and blood pressure.

              Metabolic phenotypes are the products of interactions among a variety of factors-dietary, other lifestyle/environmental, gut microbial and genetic. We use a large-scale exploratory analytical approach to investigate metabolic phenotype variation across and within four human populations, based on 1H NMR spectroscopy. Metabolites discriminating across populations are then linked to data for individuals on blood pressure, a major risk factor for coronary heart disease and stroke (leading causes of mortality worldwide). We analyse spectra from two 24-hour urine specimens for each of 4,630 participants from the INTERMAP epidemiological study, involving 17 population samples aged 40-59 in China, Japan, UK and USA. We show that urinary metabolite excretion patterns for East Asian and western population samples, with contrasting diets, diet-related major risk factors, and coronary heart disease/stroke rates, are significantly differentiated (P < 10(-16)), as are Chinese/Japanese metabolic phenotypes, and subgroups with differences in dietary vegetable/animal protein and blood pressure. Among discriminatory metabolites, we quantify four and show association (P < 0.05 to P < 0.0001) of mean 24-hour urinary formate excretion with blood pressure in multiple regression analyses for individuals. Mean 24-hour urinary excretion of alanine (direct) and hippurate (inverse), reflecting diet and gut microbial activities, are also associated with blood pressure of individuals. Metabolic phenotyping applied to high-quality epidemiological data offers the potential to develop an area of aetiopathogenetic knowledge involving discovery of novel biomarkers related to cardiovascular disease risk.
                Bookmark

                Author and article information

                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group
                2045-2322
                09 October 2015
                2015
                : 5
                : 14843
                Affiliations
                [1 ]Department of Circulation and Medical Imaging, Norwegian University of Science and Technology , Trondheim, Norway
                [2 ]St. Olavs Hospital, Trondheim University Hospital , Trondheim, Norway
                [3 ]Chronobiology, Faculty of Health and Medical Sciences, University of Surrey , Guildford, Surrey GU2 7XH, UK
                [4 ]Department of Surgery and Cancer, Imperial College London , London, SW7 2AZ, UK
                Author notes
                [*]

                These authors contributed equally to this work.

                [†]

                Present address: Department of Surgery and Cancer, Imperial College London, London SW7 2AZ, UK.

                Article
                srep14843
                10.1038/srep14843
                4598809
                26450397
                66404c56-c567-43b7-8499-1a1317601f59
                Copyright © 2015, Macmillan Publishers Limited

                This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

                History
                : 23 June 2015
                : 03 September 2015
                Categories
                Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article