36
views
0
recommends
+1 Recommend
1 collections
    8
    shares

      International Journal of Nanomedicine (submit here)

      This international, peer-reviewed Open Access journal by Dove Medical Press focuses on the application of nanotechnology in diagnostics, therapeutics, and drug delivery systems throughout the biomedical field. Sign up for email alerts here.

      105,621 Monthly downloads/views I 7.033 Impact Factor I 10.9 CiteScore I 1.22 Source Normalized Impact per Paper (SNIP) I 1.032 Scimago Journal & Country Rank (SJR)

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Follicular delivery of spironolactone via nanostructured lipid carriers for management of alopecia

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Spironolactone (SL) is a US Food and Drug Administration-approved drug for the treatment of hypertension and various edematous conditions. SL has gained a lot of attention for treating androgenic alopecia due to its potent antiandrogenic properties. Recently, there has been growing interest for follicular targeting of drug molecules for treatment of hair and scalp disorders using nanocolloidal lipid-based delivery systems to minimize unnecessary systemic side effects associated with oral drug administration. Accordingly, the objective of this study is to improve SL efficiency and safety in treating alopecia through the preparation of colloidal nanostructured lipid carriers (NLCs) for follicular drug delivery. SL-loaded NLCs were prepared by an emulsion solvent diffusion and evaporation method using 2 3 full factorial design. All of the prepared formulations were spherical in shape with nanometric size range (215.6–834.3 nm) and entrapment efficiency >74%. Differential scanning calorimetry thermograms and X-ray diffractograms revealed that SL exists in amorphous form within the NLC matrices. The drug release behavior from the NLCs displayed an initial burst release phase followed by sustained release of SL. Confocal laser scanning microscopy confirmed the potential of delivering the fluorolabeled NLCs within the follicles, suggesting the possibility of using SL-loaded NLCs for localized delivery of SL into the scalp hair follicles.

          Most cited references48

          • Record: found
          • Abstract: found
          • Article: not found

          Preparation and characterization of stearic acid nanostructured lipid carriers by solvent diffusion method in an aqueous system.

          Nanostuctured lipid carriers (NLC) based on mixture of solid lipids with spatially incompatible liquid lipids are a new type of lipid nanoparticles, which offer the advantage of improved drug loading capacity and release properties. In present study, stearic acid (SA) nanostuctured lipid carriers with various oleic acid (OA) content were successfully prepared by solvent diffusion method in an aqueous system. The size and surface morphology of nanoparticles were significantly influenced by OA content. As OA content increased up to 30wt%, the obtained particles showed pronounced smaller size and more regular morphology in spherical shape with smooth surface. Compared with solid lipid nanoparticles (SLN), NLC exhibited improved drug loading capacity, and the drug loading capacity increased with increasing OA content. These results were explained by differential scanning calorimetry (DSC) investigations. The addition of OA to nanoparticles formulation resulted in massive crystal order disturbance and less ordered matrix of NLC, and hence, increased the drug loading capacity. The drug in vitro release behavior from NLC displayed biphasic drug release pattern with burst release at the initial stage and prolonged release afterwards, and the successful control of release rate at the initial stage can be achieved by controlling OA content.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Penetration of metallic nanoparticles in human full-thickness skin.

            The potential and benefits of nanoparticles in nanobiotechnology have been enthusiastically discussed in recent literature; however, little is known about the potential risks of contamination by accidental contact during production or use. Although theories of transdermal drug delivery suggest that skin structure and composition do not allow the penetration of materials larger than 600 Da, some articles on particle penetration into the skin have been recently published. Consequently, we wanted to evaluate whether metallic nanoparticles smaller than 10 nm could penetrate and eventually permeate the skin. Two different stabilized nanoparticle dispersions were applied to excised human skin samples using vertical diffusion cells. At established time points, solutions in receiving chambers were quantified for nanoparticle concentration, and skin was processed for light transmission and electron microscope examination. The results of this study showed that nanoparticles were able to penetrate the hair follicle and stratum corneum (SC), occasionally reaching the viable epidermis. Yet, nanoparticles were unable to permeate the skin. These results represent a breakthrough in skin penetration because it is early evidence where rigid nanoparticles have been shown to passively reach the viable epidermis through the SC lipidic matrix.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Formulation design, preparation and physicochemical characterizations of solid lipid nanoparticles containing a hydrophobic drug: effects of process variables.

              This study aimed to prepare solid lipid nanoparticles (SLNs) of a hydrophobic drug, tretinoin, by emulsification-ultrasonication method. Solubility of tretinoin in the solid lipids was examined. Effects of process variables were investigated on particle size, polydispersity index (PI), zeta potential (ZP), drug encapsulation efficiency (EE), and drug loading (L) of the SLNs. Shape and surface morphology of the SLNs were investigated by cryogenic field emission scanning electron microscopy (cryo-FESEM). Complete encapsulation of drug in the nanoparticles was checked by cross-polarized light microscopy and differential scanning calorimetry (DSC). Crystallinity of the formulation was analyzed by DSC and powder X-ray diffraction (PXRD). In addition, drug release and stability studies were also performed. The results indicated that 10mg tretinoin was soluble in 0.45±0.07 g Precirol® ATO5 and 0.36±0.06 g Compritol® 888ATO, respectively. Process variables exhibited significant influence in producing SLNs. SLNs with I30I mV ZP, >75% EE, and ∼0.8% L can be produced following the appropriate formulation conditions. Cryo-FESEM study showed spherical particles with smooth surface. Cross-polarized light microscopy study revealed that drug crystals in the external aqueous phase were absent when the SLNs were prepared at ≤0.05% drug concentration. DSC and PXRD studies indicated complete drug encapsulation within the nanoparticle matrix as amorphous form. The drug release study demonstrated sustained/prolonged drug release from the SLNs. Furthermore, tretinoin-loaded SLNs were stable for 3 months at 4°C. Hence, the developed SLNs can be used as drug carrier for sustained/prolonged drug release and/or to improve oral absorption/bioavailability.
                Bookmark

                Author and article information

                Journal
                Int J Nanomedicine
                Int J Nanomedicine
                International Journal of Nanomedicine
                International Journal of Nanomedicine
                Dove Medical Press
                1176-9114
                1178-2013
                2014
                26 November 2014
                : 9
                : 5449-5460
                Affiliations
                Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
                Author notes
                Correspondence: Mona Hassan Aburahma, Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, 11562, Cairo, Egypt, Email mona_aburahma@ 123456hotmail.com
                Article
                ijn-9-5449
                10.2147/IJN.S73010
                4251754
                25473283
                66559552-0424-4aa8-8fac-f5eb341865be
                © 2014 Shamma and Aburahma. This work is published by Dove Medical Press Limited, and licensed under Creative Commons Attribution – Non Commercial (unported, v3.0) License

                The full terms of the License are available at http://creativecommons.org/licenses/by-nc/3.0/. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed.

                History
                Categories
                Original Research

                Molecular medicine
                spironolactone,androgenic alopecia,nanostructured lipid carriers,follicular targeting,confocal laser scanning microscopy

                Comments

                Comment on this article