5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Long noncoding RNA NEAT 1 and its target microRNA‐125a in sepsis: Correlation with acute respiratory distress syndrome risk, biochemical indexes, disease severity, and 28‐day mortality

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Sepsis is one of the main contributors to in‐hospital deaths. This study aimed to evaluate the clinical roles of long noncoding RNA (lncRNA) nuclear‐enriched abundant transcript 1 (NEAT1) and microRNA (miR)‐125a in sepsis.

          Methods

          LncRNA NEAT1 and miR‐125a in plasma samples from 102 sepsis patients and 100 healthy controls (HCs) were detected by reverse transcription‐quantitative polymerase chain reaction. In sepsis patients, general disease severity was assessed by acute physiology and chronic health evaluation (APACHE) II score and sequential organ failure assessment (SOFA) score. Meanwhile, acute respiratory distress syndrome (ARDS) occurrence and mortality during 28 days were recorded.

          Results

          LncRNA NEAT1 was increased, but miR‐125a was decreased in sepsis patients compared to HCs, and in ARDS sepsis patients compared to non‐ARDS sepsis patients. The receiver's operative characteristic (ROC) curves revealed that higher lncRNA NEAT1 or lower miR‐125a had certain predictive value for ARDS risk. Further multivariate logistic regression revealed miR‐125a but not lncRNA NEAT1 was correlated with ARDS risk independently in sepsis patients. Additionally, lncRNA NEAT1 was positively, but miR‐125a was negatively correlated with APACHE II score and SOFA score in sepsis patients. Moreover, higher lncRNA NEAT1 and lower miR‐125a were observed in 28‐day deaths compared to 28‐day survivors and were correlated with increased accumulating mortality in sepsis patients.

          Conclusion

          LncRNA NEAT1 high expression and miR‐125a low expression correlate with increased ARDS risk, enhanced disease severity, higher 28‐day mortality, and negatively associate with each other in sepsis patients.

          Abstract

          Related collections

          Most cited references29

          • Record: found
          • Abstract: found
          • Article: found

          The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3).

          Definitions of sepsis and septic shock were last revised in 2001. Considerable advances have since been made into the pathobiology (changes in organ function, morphology, cell biology, biochemistry, immunology, and circulation), management, and epidemiology of sepsis, suggesting the need for reexamination.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Acute respiratory distress syndrome: the Berlin Definition.

            The acute respiratory distress syndrome (ARDS) was defined in 1994 by the American-European Consensus Conference (AECC); since then, issues regarding the reliability and validity of this definition have emerged. Using a consensus process, a panel of experts convened in 2011 (an initiative of the European Society of Intensive Care Medicine endorsed by the American Thoracic Society and the Society of Critical Care Medicine) developed the Berlin Definition, focusing on feasibility, reliability, validity, and objective evaluation of its performance. A draft definition proposed 3 mutually exclusive categories of ARDS based on degree of hypoxemia: mild (200 mm Hg < PaO2/FIO2 ≤ 300 mm Hg), moderate (100 mm Hg < PaO2/FIO2 ≤ 200 mm Hg), and severe (PaO2/FIO2 ≤ 100 mm Hg) and 4 ancillary variables for severe ARDS: radiographic severity, respiratory system compliance (≤40 mL/cm H2O), positive end-expiratory pressure (≥10 cm H2O), and corrected expired volume per minute (≥10 L/min). The draft Berlin Definition was empirically evaluated using patient-level meta-analysis of 4188 patients with ARDS from 4 multicenter clinical data sets and 269 patients with ARDS from 3 single-center data sets containing physiologic information. The 4 ancillary variables did not contribute to the predictive validity of severe ARDS for mortality and were removed from the definition. Using the Berlin Definition, stages of mild, moderate, and severe ARDS were associated with increased mortality (27%; 95% CI, 24%-30%; 32%; 95% CI, 29%-34%; and 45%; 95% CI, 42%-48%, respectively; P < .001) and increased median duration of mechanical ventilation in survivors (5 days; interquartile [IQR], 2-11; 7 days; IQR, 4-14; and 9 days; IQR, 5-17, respectively; P < .001). Compared with the AECC definition, the final Berlin Definition had better predictive validity for mortality, with an area under the receiver operating curve of 0.577 (95% CI, 0.561-0.593) vs 0.536 (95% CI, 0.520-0.553; P < .001). This updated and revised Berlin Definition for ARDS addresses a number of the limitations of the AECC definition. The approach of combining consensus discussions with empirical evaluation may serve as a model to create more accurate, evidence-based, critical illness syndrome definitions and to better inform clinical care, research, and health services planning.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Hospital deaths in patients with sepsis from 2 independent cohorts.

                Bookmark

                Author and article information

                Contributors
                yucaishi4713998@163.com
                Journal
                J Clin Lab Anal
                J Clin Lab Anal
                10.1002/(ISSN)1098-2825
                JCLA
                Journal of Clinical Laboratory Analysis
                John Wiley and Sons Inc. (Hoboken )
                0887-8013
                1098-2825
                12 August 2020
                December 2020
                : 34
                : 12 ( doiID: 10.1002/jcla.v34.12 )
                : e23509
                Affiliations
                [ 1 ] Department of Critical Medicine The Central Hospital of Wuhan Tongji Medical College Huazhong University of Science and Technology Wuhan China
                Author notes
                [*] [* ] Correspondence

                Junhui Yang, Department of Critical Medicine, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, No.26 Shengli Street, Jiangan District, Wuhan 430014, Hubei, China.

                Email: yucaishi4713998@ 123456163.com

                Author information
                https://orcid.org/0000-0002-4483-7270
                Article
                JCLA23509
                10.1002/jcla.23509
                7755762
                32785981
                6655def6-3fa2-4a0e-ac05-06e74e3d0300
                © 2020 The Authors. Journal of Clinical Laboratory Analysis published by Wiley Periodicals LLC

                This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc-nd/4.0/ License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made.

                History
                : 26 May 2020
                : 01 July 2020
                : 08 July 2020
                Page count
                Figures: 7, Tables: 4, Pages: 10, Words: 6739
                Categories
                Research Article
                Research Articles
                Custom metadata
                2.0
                December 2020
                Converter:WILEY_ML3GV2_TO_JATSPMC version:5.9.6 mode:remove_FC converted:22.12.2020

                Clinical chemistry
                28‐day mortality,acute respiratory distress syndrome,long noncoding rna nuclear‐enriched abundant transcript 1,microrna‐125a,sepsis

                Comments

                Comment on this article