7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Ubiquitinated-PCNA protects replication forks from DNA2-mediated degradation by regulating Okazaki fragment maturation and chromatin assembly

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Upon genotoxic stress, PCNA ubiquitination allows for replication of damaged DNA by recruiting lesion-bypass DNA polymerases. However, PCNA is also ubiquitinated during normal S-phase progression. By employing 293T and RPE1 cells deficient in PCNA ubiquitination, generated through CRISPR/Cas9 gene editing, here, we show that this modification promotes cellular proliferation and suppression of genomic instability under normal growth conditions. Loss of PCNA-ubiquitination results in DNA2-dependent but MRE11-independent nucleolytic degradation of nascent DNA at stalled replication forks. This degradation is linked to defective gap-filling in the wake of the replication fork and incomplete Okazaki fragment maturation, which interferes with efficient PCNA unloading by ATAD5 and subsequent nucleosome deposition by CAF-1. Moreover, concomitant loss of PCNA-ubiquitination and the BRCA pathway results in increased nascent DNA degradation and PARP inhibitor sensitivity. In conclusion, we show that by ensuring efficient Okazaki fragment maturation, PCNA-ubiquitination protects fork integrity and promotes the resistance of BRCA-deficient cells to PARP-inhibitors.

          Abstract

          PCNA is essential for DNA replication and cellular proliferation. Here, the authors reveal that PCNA ubiquitination protects stalled replication forks from DNA2-mediated degradation via regulation of Okazaki fragment maturation and chromatin assembly.

          Related collections

          Most cited references45

          • Record: found
          • Abstract: found
          • Article: not found

          RAD6-dependent DNA repair is linked to modification of PCNA by ubiquitin and SUMO.

          The RAD6 pathway is central to post-replicative DNA repair in eukaryotic cells; however, the machinery and its regulation remain poorly understood. Two principal elements of this pathway are the ubiquitin-conjugating enzymes RAD6 and the MMS2-UBC13 heterodimer, which are recruited to chromatin by the RING-finger proteins RAD18 and RAD5, respectively. Here we show that UBC9, a small ubiquitin-related modifier (SUMO)-conjugating enzyme, is also affiliated with this pathway and that proliferating cell nuclear antigen (PCNA) -- a DNA-polymerase sliding clamp involved in DNA synthesis and repair -- is a substrate. PCNA is mono-ubiquitinated through RAD6 and RAD18, modified by lysine-63-linked multi-ubiquitination--which additionally requires MMS2, UBC13 and RAD5--and is conjugated to SUMO by UBC9. All three modifications affect the same lysine residue of PCNA, suggesting that they label PCNA for alternative functions. We demonstrate that these modifications differentially affect resistance to DNA damage, and that damage-induced PCNA ubiquitination is elementary for DNA repair and occurs at the same conserved residue in yeast and humans.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Interaction of human DNA polymerase eta with monoubiquitinated PCNA: a possible mechanism for the polymerase switch in response to DNA damage.

            Most types of DNA damage block replication fork progression during DNA synthesis because replicative DNA polymerases are unable to accommodate altered DNA bases in their active sites. To overcome this block, eukaryotic cells employ specialized translesion synthesis (TLS) polymerases, which can insert nucleotides opposite damaged bases. In particular, TLS by DNA polymerase eta (poleta) is the major pathway for bypassing UV photoproducts. How the cell switches from replicative to TLS polymerase at the site of blocked forks is unknown. We show that, in human cells, PCNA becomes monoubiquitinated following UV irradiation of the cells and that this is dependent on the hRad18 protein. Monoubiquitinated PCNA but not unmodified PCNA specifically interacts with poleta, and we have identified two motifs in poleta that are involved in this interaction. Our findings provide an attractive mechanism by which monoubiquitination of PCNA might mediate the polymerase switch.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Control of spontaneous and damage-induced mutagenesis by SUMO and ubiquitin conjugation.

              Protein modification by ubiquitin is emerging as a signal for various biological processes in eukaryotes, including regulated proteolysis, but also for non-degradative functions such as protein localization, DNA repair and regulation of chromatin structure. A small ubiquitin-related modifier (SUMO) uses a similar conjugation system that sometimes counteracts the effects of ubiquitination. Ubiquitin and SUMO compete for modification of proliferating cell nuclear antigen (PCNA), an essential processivity factor for DNA replication and repair. Whereas multi-ubiquitination is mediated by components of the RAD6 pathway and promotes error-free repair, SUMO modification is associated with replication. Here we show that RAD6-mediated mono-ubiquitination of PCNA activates translesion DNA synthesis by the damage-tolerant polymerases eta and zeta in yeast. Moreover, polymerase zeta is differentially affected by mono-ubiquitin and SUMO modification of PCNA. Whereas ubiquitination is required for damage-induced mutagenesis, both SUMO and mono-ubiquitin contribute to spontaneous mutagenesis in the absence of DNA damage. Our findings assign a function to SUMO during S phase and demonstrate how ubiquitin and SUMO, by regulating the accuracy of replication and repair, contribute to overall genomic stability.
                Bookmark

                Author and article information

                Contributors
                glm29@psu.edu
                Journal
                Nat Commun
                Nat Commun
                Nature Communications
                Nature Publishing Group UK (London )
                2041-1723
                1 May 2020
                1 May 2020
                2020
                : 11
                : 2147
                Affiliations
                [1 ]ISNI 0000 0001 2097 4281, GRID grid.29857.31, Department of Biochemistry and Molecular Biology, , The Pennsylvania State University College of Medicine, ; Hershey, PA 17033 USA
                [2 ]ISNI 0000000419368657, GRID grid.17635.36, Department of Biochemistry, Molecular Biology and Biophysics, College of Biological Sciences, , University of Minnesota, ; Minneapolis, MN 55455 USA
                [3 ]ISNI 0000 0004 0421 8357, GRID grid.410425.6, Department of Cancer Genetics and Epigenetics, , Beckman Research Institute of City of Hope, ; Duarte, CA 91010 USA
                Author information
                http://orcid.org/0000-0001-5261-458X
                http://orcid.org/0000-0003-1783-619X
                http://orcid.org/0000-0003-3825-149X
                Article
                16096
                10.1038/s41467-020-16096-w
                7195461
                32358495
                665a4562-1520-4ac0-94ac-c28d73c1d06f
                © The Author(s) 2020

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 12 November 2019
                : 14 April 2020
                Funding
                Funded by: FundRef https://doi.org/10.13039/100000002, U.S. Department of Health & Human Services | National Institutes of Health (NIH);
                Award ID: R01CA073764
                Award ID: R01GM134681
                Award ID: R01GM074917
                Award ID: R01ES026184
                Award ID: R01GM134681
                Award Recipient :
                Funded by: U.S. Department of Health & Human Services | National Institutes of Health (NIH)
                Funded by: U.S. Department of Health & Human Services | National Institutes of Health (NIH)
                Funded by: U.S. Department of Health & Human Services | National Institutes of Health (NIH)
                Funded by: U.S. Department of Health & Human Services | National Institutes of Health (NIH)
                Categories
                Article
                Custom metadata
                © The Author(s) 2020

                Uncategorized
                stalled forks,dna damage and repair
                Uncategorized
                stalled forks, dna damage and repair

                Comments

                Comment on this article