Blog
About

  • Record: found
  • Abstract: found
  • Article: found
Is Open Access

Self-similarity of complex networks

Preprint

Read this article at

Bookmark
      There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

      Abstract

      Complex networks have been studied extensively due to their relevance to many real systems as diverse as the World-Wide-Web (WWW), the Internet, energy landscapes, biological and social networks \cite{ab-review,mendes,vespignani,newman,amaral}. A large number of real networks are called ``scale-free'' because they show a power-law distribution of the number of links per node \cite{ab-review,barabasi1999,faloutsos}. However, it is widely believed that complex networks are not {\it length-scale} invariant or self-similar. This conclusion originates from the ``small-world'' property of these networks, which implies that the number of nodes increases exponentially with the ``diameter'' of the network \cite{erdos,bollobas,milgram,watts}, rather than the power-law relation expected for a self-similar structure. Nevertheless, here we present a novel approach to the analysis of such networks, revealing that their structure is indeed self-similar. This result is achieved by the application of a renormalization procedure which coarse-grains the system into boxes containing nodes within a given "size". Concurrently, we identify a power-law relation between the number of boxes needed to cover the network and the size of the box defining a finite self-similar exponent. These fundamental properties, which are shown for the WWW, social, cellular and protein-protein interaction networks, help to understand the emergence of the scale-free property in complex networks. They suggest a common self-organization dynamics of diverse networks at different scales into a critical state and in turn bring together previously unrelated fields: the statistical physics of complex networks with renormalization group, fractals and critical phenomena.

      Related collections

      Author and article information

      Journal
      03 March 2005
      cond-mat/0503078
      10.1038/nature03248
      Custom metadata
      Nature, 433, (2005), 392-395
      28 pages, 12 figures, more informations at http://www.jamlab.org
      cond-mat.dis-nn

      Comments

      Comment on this article