5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Time-Feature of Uric Acid Excretion in Hyperuricemia Mice Induced by Potassium Oxonate and Adenine

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Hyperuricemia is an important risk factor of chronic kidney disease, metabolic syndrome and cardiovascular disease. We aimed to assess the time-feature relationship of hyperuricemia mouse model on uric acid excretion and renal function. A hyperuricemia mouse model was established by potassium oxonate (PO) and adenine for 21 days. Ultra Performance Liquid Chromatography was used to determine plasma uric acid level. Hematoxylin-eosin staining was applied to observe kidney pathological changes, and Western blot was used to detect renal urate transporters’ expression. In hyperuricemia mice, plasma uric acid level increased significantly from the 3rd day, and tended to be stable from the 7th day, and the clearance rate of uric acid decreased greatly from the 3rd day. Further study found that the renal organ of hyperuricemia mice showed slight damage from the 3rd day, and significantly deteriorated renal function from the 10th day. In addition, the expression levels of GLUT9 and URAT1 were upregulated from the 3rd day, while ABCG2 and OAT1 were downregulated from the 3rd day, and NPT1 were downregulated from the 7th day in hyperuricemia mice kidney. This paper presents a method suitable for experimental hyperuricemia mouse model, and shows the time-feature of each index in a hyperuricemia mice model.

          Related collections

          Most cited references33

          • Record: found
          • Abstract: found
          • Article: not found

          Febuxostat compared with allopurinol in patients with hyperuricemia and gout.

          Febuxostat, a novel nonpurine selective inhibitor of xanthine oxidase, is a potential alternative to allopurinol for patients with hyperuricemia and gout. We randomly assigned 762 patients with gout and with serum urate concentrations of at least 8.0 mg per deciliter (480 micromol per liter) to receive either febuxostat (80 mg or 120 mg) or allopurinol (300 mg) once daily for 52 weeks; 760 received the study drug. Prophylaxis against gout flares with naproxen or colchicine was provided during weeks 1 through 8. The primary end point was a serum urate concentration of less than 6.0 mg per deciliter (360 micromol per liter) at the last three monthly measurements. The secondary end points included reduction in the incidence of gout flares and in tophus area. The primary end point was reached in 53 percent of patients receiving 80 mg of febuxostat, 62 percent of those receiving 120 mg of febuxostat, and 21 percent of those receiving allopurinol (P<0.001 for the comparison of each febuxostat group with the allopurinol group). Although the incidence of gout flares diminished with continued treatment, the overall incidence during weeks 9 through 52 was similar in all groups: 64 percent of patients receiving 80 mg of febuxostat, 70 percent of those receiving 120 mg of febuxostat, and 64 percent of those receiving allopurinol (P=0.99 for 80 mg of febuxostat vs. allopurinol; P=0.23 for 120 mg of febuxostat vs. allopurinol). The median reduction in tophus area was 83 percent in patients receiving 80 mg of febuxostat and 66 percent in those receiving 120 mg of febuxostat, as compared with 50 percent in those receiving allopurinol (P=0.08 for 80 mg of febuxostat vs. allopurinol; P=0.16 for 120 mg of febuxostat vs. allopurinol). More patients in the high-dose febuxostat group than in the allopurinol group (P=0.003) or the low-dose febuxostat group discontinued the study. Four of the 507 patients in the two febuxostat groups (0.8 percent) and none of the 253 patients in the allopurinol group died; all deaths were from causes that the investigators (while still blinded to treatment) judged to be unrelated to the study drugs (P=0.31 for the comparison between the combined febuxostat groups and the allopurinol group). Febuxostat, at a daily dose of 80 mg or 120 mg, was more effective than allopurinol at the commonly used fixed daily dose of 300 mg in lowering serum urate. Similar reductions in gout flares and tophus area occurred in all treatment groups. Copyright 2005 Massachusetts Medical Society.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Effect of allopurinol in chronic kidney disease progression and cardiovascular risk.

            Hyperuricemia is associated with hypertension, inflammation, renal disease progression, and cardiovascular disease. However, no data are available regarding the effect of allopurinol in patients with chronic kidney disease. We conducted a prospective, randomized trial of 113 patients with estimated GFR (eGFR) <60 ml/min. Patients were randomly assigned to treatment with allopurinol 100 mg/d (n = 57) or to continue the usual therapy (n = 56). Clinical, biochemical, and inflammatory parameters were measured at baseline and at 6, 12, and 24 months of treatment. The objectives of study were: (1) renal disease progression; (2) cardiovascular events; and (3) hospitalizations of any causes. Serum uric acid and C-reactive protein levels were significantly decreased in subjects treated with allopurinol. In the control group, eGFR decreased 3.3 +/- 1.2 ml/min per 1.73 m(2), and in the allopurinol group, eGFR increased 1.3 +/- 1.3 ml/min per 1.73 m(2) after 24 months. Allopurinol treatment slowed down renal disease progression independently of age, gender, diabetes, C-reactive protein, albuminuria, and renin-angiotensin system blockers use. After a mean follow-up time of 23.4 +/- 7.8 months, 22 patients suffered a cardiovascular event. Diabetes mellitus, previous coronary heart disease, and C-reactive protein levels increased cardiovascular risk. Allopurinol treatment reduces risk of cardiovascular events in 71% compared with standard therapy. Allopurinol decreases C-reactive protein and slows down the progression of renal disease in patients with chronic kidney disease. In addition, allopurinol reduces cardiovascular and hospitalization risk in these subjects.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Prevalence of Hyperuricemia and Gout in Mainland China from 2000 to 2014: A Systematic Review and Meta-Analysis

              We systematically identified the prevalence of hyperuricemia and gout in mainland China and provided informative data that can be used to create appropriate local public health policies. Relevant articles from 2000 to 2014 were identified by searching 5 electronic databases: PubMed, Google Scholar, Chinese Wanfang, CNKI, and Chongqing VIP. All of the calculations were performed using the Stata 11.0 and SPSS 20.0 software. The eligible articles (n = 36; 3 in English and 33 in Chinese) included 44 studies (38 regarding hyperuricemia and 6 regarding gout). The pooled prevalence of hyperuricemia and gout was 13.3% (95% CI: 11.9%, 14.6%) and 1.1% (95% CI: 0.7%, 1.5%), respectively. Although publication bias was observed, the results did not change after a trim and fill test, indicating that that impact of this bias was likely insignificant. The prevalence of hyperuricemia and gout was high in mainland China. The subgroup analysis suggested that the geographical region, whether the residents dwell in urban or rural and coastal or inland areas, the economic level, and sex may be associated with prevalence.
                Bookmark

                Author and article information

                Journal
                Int J Mol Sci
                Int J Mol Sci
                ijms
                International Journal of Molecular Sciences
                MDPI
                1422-0067
                22 July 2020
                August 2020
                : 21
                : 15
                : 5178
                Affiliations
                [1 ]Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 312 Anshanxi Road, Nankai District, Tianjin 300193, China; 13821190632@ 123456126.com (S.W.); liumengyang0212@ 123456126.com (M.L.); lemonadelinliu@ 123456163.com (L.L.)
                [2 ]Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae (Tianjin University of Traditional Chinese Medicine), Ministry of Education, 312 Anshanxi Road, Nankai District, Tianjin 300193, China; nkwangdan@ 123456163.com (D.W.); hyyu@ 123456tjutcm.edu.cn (H.Y.)
                [3 ]Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 312 Anshanxi Road, Nankai District, Tianjin 300193, China; serafinachen@ 123456163.com (Q.C.); bz93171125@ 123456163.com (R.B.)
                Author notes
                [* ]Correspondence: zhwwxzh@ 123456tjutcm.edu.cn (Y.Z.); wangtao@ 123456tjutcm.edu.cn (T.W.); Tel./Fax: +86-22-5959-6355 (Y.Z.); +86-22-5959-6163 (T.W.)
                [†]

                These authors contributed equally to this work.

                Article
                ijms-21-05178
                10.3390/ijms21155178
                7432283
                32707836
                667ca4f0-ea4b-426e-8d7b-2b4992823422
                © 2020 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 22 June 2020
                : 20 July 2020
                Categories
                Article

                Molecular biology
                hyperuricemia,mouse model,uric acid excretion,renal injury,urate transporter
                Molecular biology
                hyperuricemia, mouse model, uric acid excretion, renal injury, urate transporter

                Comments

                Comment on this article