66
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Role of Flavonoids on Oxidative Stress in Epilepsy

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Backgrounds. Oxidative stress can result from excessive free-radical production and it is likely implicated as a possible mechanism involved in the initiation and progression of epileptogenesis. Flavonoids can protect the brain from oxidative stress. In the central nervous system (CNS) several flavonoids bind to the benzodiazepine site on the GABA A-receptor resulting in anticonvulsive effects. Objective. This review provides an overview about the role of flavonoids in oxidative stress in epilepsy. The mechanism of action of flavonoids and its relation to the chemical structure is also discussed. Results/Conclusions. There is evidence that suggests that flavonoids have potential for neuroprotection in epilepsy.

          Related collections

          Most cited references73

          • Record: found
          • Abstract: found
          • Book: not found

          Free Radicals in Biology and Medicine

          Free Radicals in Biology and Medicine has become a classic text in the field of free radical and antioxidant research since its first publication in 1985. <br> This latest edition has been comprehensively rewritten and updated (over 80% of the text is new), while maintaining the clarity of its predecessor. There is expanded coverage of isoprostanes and related compounds, mechanisms of oxidative damage to DNA and proteins (and the repair of such damage), the free radical theory of aging and the roles played by reactive species in signal transduction, cell death, human reproduction, and other important biological events. Greater emphasis has also been placed on the methods available to measure reactive species and oxidative damage (and their potential pitfalls), as well as the importance of antioxidants in the human diet. <br> This book is recommended as a comprehensive introduction to the field for students, clinicians and researchers, and an invaluable companion to all those interested in the role of free radicals in the life and biomedical sciences.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Anti-inflammatory activities of resveratrol in the brain: role of resveratrol in microglial activation.

            Neuroinflammation is an important contributor to pathogenesis of neurological disorders, with microglial activation as a hallmark of neuroinflammation. Microglia serve the role of immune surveillance under normal conditions, but after brain damage or exposure to inflammation, microglia are activated and secrete pro-inflammatory and neurotoxic mediators. Sustained production of these factors contributes to neuronal damage. Therefore, inhibition of microglia-mediated neuroinflammation may become a promising therapeutic target for neurological disorders. Resveratrol, a non-flavonoid polyphenol rich in red wine and grapes, has beneficial health effects from its antioxidant, anticancer and anti-inflammatory properties. Recently, resveratrol has been shown to protect against various neurological disorders in experimental models, including brain ischemia, seizures, and neurodegenerative disease models. This minireview summarized the anti-inflammatory activities of resveratrol in the brain from both in vivo and in vitro studies, and highlighted the inhibition of activated microglia as a potential mechanism of neuroprotection. The release of various pro-inflammatory factors, the production of reactive oxygen species, and the activation of signal pathways leading to neuroinflammation were discussed in relation to microglial activation. Taken together, microglia are an important target for anti-inflammatory activities of resveratrol in the brain. (c) 2010 Elsevier B.V. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The neuroprotective properties of the Ginkgo biloba leaf: a review of the possible relationship to platelet-activating factor (PAF).

              Ginkgo biloba (Ginkgoaceae) is an ancient Chinese tree which has been cultivated and held sacred for its health-promoting properties. There is substantial experimental evidence to support the view that Ginkgo biloba extracts have neuroprotective properties under conditions such as hypoxia/ischemia, seizure activity and peripheral nerve damage. Research on the biochemical effects of Ginkgo biloba extracts is still at a very early stage. One of the components of Ginkgo biloba, ginkgolide B, is a potent platelet-activating factor (PAF) antagonist. Although the terpene fraction of Ginkgo biloba, which contains the ginkgolides, may contribute to the neuroprotective properties of the Ginkgo biloba leaf, it is also likely that the flavonoid fraction, containing free radical scavengers, is important in this respect. Taken together, the evidence suggests that Ginkgo biloba extracts are worthy of further investigation as potential neuroprotectant agents.
                Bookmark

                Author and article information

                Journal
                Oxid Med Cell Longev
                Oxid Med Cell Longev
                OMCL
                Oxidative Medicine and Cellular Longevity
                Hindawi Publishing Corporation
                1942-0900
                1942-0994
                2015
                11 January 2015
                : 2015
                : 171756
                Affiliations
                1Postgraduate Program in Biotechnology, State University of Feira de Santana, 44036-900 Feira de Santana, BA, Brazil
                2Department of Physiology, Federal University of Sergipe, 49100-000 São Cristóvão, SE, Brazil
                3Federal University of Pernambuco, 50740-521 Recife, PE, Brazil
                4Federal University of Piauí, 64049-550 Teresina, PI, Brazil
                5Federal University of San Francisco Valley, 56304-205 Petrolina, PE, Brazil
                Author notes
                *Jackson Roberto Guedes da Silva Almeida: jackson.guedes@ 123456univasf.edu.br

                Academic Editor: Francisco Javier Romero

                Article
                10.1155/2015/171756
                4306219
                25653736
                66833b92-8ee2-4f53-949a-60bf303f8743
                Copyright © 2015 Tâmara Coimbra Diniz et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 30 July 2014
                : 11 December 2014
                Categories
                Review Article

                Molecular medicine
                Molecular medicine

                Comments

                Comment on this article