10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Green synthesis of gold nanoparticles from the aqueous extracts of Sphagneticola trilobata (L.) J.F Pruski as anti-breast cancer agents

      research-article

      Read this article at

      ScienceOpenPublisherPMC
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The invasive plant, Sphagneticola trilobata (L.) J. F. Pruski, has been known for its bioactivities and used to synthesize gold nanoparticles (AuNPs). Nonetheless, previous research has not directly compared the effectiveness of the plant parts in producing the AuNPs. The objective of this study was to compare the effectiveness of the flower and leaf of S. trilobata in synthesizing AuNPs. S. trilobata leaves and flowers were separately extracted using distilled water at 60°C for 30 min. The leaf and flower extracts were mixed with the HAuCl. 3H 2O and heated to 60°C for 30 min to yield AuNPs-ALSt and AuNPs-AFSt, respectively. AuNPs were also prepared using trisodium citrate (Na 3C 6H 5O 7) as a control. The resultant AuNPs were characterized using an ultraviolet-visible spectrophotometer, particle size analyzer, and scanning electron microscope. Antioxidant activity was evaluated based on 1-diphenyl-2-picrylhydrazyl (DPPH) inhibition and anticancer activity– 3-(4, 5-dimethylthiazolyl-2)-2, 5-diphenyltetrazolium bromide assay against MCF-7 cells. The AuNPs-ALSt and AuNPs-AFSt were revealed to have better stability and smaller particle diameters. AuNPs-ALSt and AuNPs-AFSt had average particle diameters of 11.86 ± 3.37 and 34.86 ± 23.56 nm, respectively. Agglomeration was predominantly observed in AuNPs synthesized using the flower or leaf extract as stipulated to be affected by the insufficient capping agent and intense hydrolytic reaction. AuNPs-AFSt had higher DPPH antioxidant activity than AuNPs-ALSt with half-maximal inhibitory concentrations of IC 50 123.44 and 168.83 ppm, respectively. Both AuNPs-ALSt and AuNPs-AFSt could inhibit 80% growth of the MCF-7; however, at lower concentrations, inhibitory effects were more pronounced in AuNPs-AFSt. Aqueous extracts of S. trilobata flowers and leaves could be used to synthesize AuNPs, whereas the former yielded AuNPs with higher biological activities.

          Related collections

          Most cited references21

          • Record: found
          • Abstract: found
          • Article: not found
          Is Open Access

          Plant Extracts Mediated Metal-Based Nanoparticles: Synthesis and Biological Applications

          The vastness of metal-based nanoparticles has continued to arouse much research interest, which has led to the extensive search and discovery of new materials with varying compositions, synthetic methods, and applications. Depending on applications, many synthetic methods have been used to prepare these materials, which have found applications in different areas, including biology. However, the prominent nature of the associated toxicity and environmental concerns involved in most of these conventional methods have limited their continuous usage due to the desire for more clean, reliable, eco-friendly, and biologically appropriate approaches. Plant-mediated synthetic approaches for metal nanoparticles have emerged to circumvent the often-associated disadvantages with the conventional synthetic routes, using bioresources that act as a scaffold by effectively reducing and stabilizing these materials, whilst making them biocompatible for biological cells. This capacity by plants to intrinsically utilize their organic processes to reorganize inorganic metal ions into nanoparticles has thus led to extensive studies into this area of biochemical synthesis and analysis. In this review, we examined the use of several plant extracts as a mediating agent for the synthesis of different metal-based nanoparticles (MNPs). Furthermore, the associated biological properties, which have been suggested to emanate from the influence of the diverse metabolites found in these plants, were also reviewed.
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Anticancer, antioxidant, and antibacterial activities of low molecular weight bioactive subfractions isolated from cultures of wood degrading fungus Cerrena unicolor

            The aim of this study is to investigate in vitro the anticancer, antioxidant, and antibacterial activities of three low molecular weight subfractions I, II and III isolated from secondary metabolites produced by the wood degrading fungus Cerrena unicolor. The present study demonstrated that the low molecular weight subfractions III exhibited the strongest inhibitory activity towards breast carcinoma cells MDA-MB-231, prostatic carcinoma cells PC3, and breast cancer cells MCF7 with the half-maximal inhibitory concentration (IC50) value of 52,25 μg/mL, 60,66 μg/mL, and 54,92 μg/mL, respectively. The highest percentage of inhibition was noted at a concentration of 300 μg/mL in all the examined tumor lines. A significant percentage (59.08%) of ex-LMSIII inhibition of the MDA-MB-231 tumor line was reached at a concentration of 15 μg/ml, while the concentration applied did not affect normal human fibroblast cells. The low molecular weight subfraction III was the most effective and additionally showed the highest free radical 1,1-diphenyl-2-picryl-hydrazyl scavenging activity (IC50 20.39 μg/mL) followed by the low molecular weight subfraction I (IC50 64.14 μg/mL) and II (IC50 49.22 μg/mL). The antibacterial activity of the tested preparations was evaluated against three microorganisms: Bacillus subtilis, Staphylococcus aureus, and Escherichia coli. The MIC minimal inhibitory concentration (MIC) values for the low molecular weight subfraction I, II, and III showed a stronger inhibition effect on S. aureus than on B. subtilis and E. coli cells. The MIC values for the low molecular weight subfraction II against S. aureus, B. subtilis, and E. coli were 6.25, 12.5, and 100 mg/mL, respectively.
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Green synthesis of gold nanoparticles using an antiepileptic plant extract: in vitro biological and photo-catalytic activities†

              Gold nanoparticles are one of the widely used metallic nanoparticle having unique surface plasmon characteristic, offers major utility in biomedical and therapeutic fields. However, chemically synthesized nanoparticle creates toxicity in the living organisms and contradicts the eco-friendly and cost-effective nature. So, developing greener synthetic route for synthesis of gold nanoparticle using natural materials is an enthralling field of research for its effectiveness in synthesizing eco-friendly, non-toxic materials. Moreover, biological components attached as stabilizing agent can exert its own effect along with the advantages of nanoparticle conjugation. In this work, we used for the first time methanolic leaf extract of Moringa oleifera as this fraction of M. oleifera exerts a neuroactive modulation against seizure as evidenced by earlier literature. The green gold nanoparticles synthesized were characterized by different characterization tools, dynamic light scattering and transmission electron microscopy techniques etc. Prepared nanoparticles were biologically (antioxidant, antimicrobial and blood cytotoxicity) characterized to screen their further utility in therapeutic strategies. Characteristics and activities of green gold nanoparticles were compared with conventional citrate stabilized gold nanoparticles. It was observed that green gold nanoparticles prepared using M. oleifera show less cytotoxicity and helps in regeneration of neuronal cells in animal model study. It establishes the fact that conjugation of different plant extract fraction for stabilization of gold nanoparticle may be responsible factor for enhancement of bioactive nature of green gold nanoparticle. In addition, the green gold nanoparticle show efficient photo-catalytic efficiency. Development of such bioactive gold nanoparticles will lead to functional materials for biomedical and therapeutic applications. Gold nanoparticles are one of the widely used metallic nanoparticle having unique surface plasmon characteristic, offers major utility in biomedical and therapeutic fields.

                Author and article information

                Journal
                J Adv Pharm Technol Res
                J Adv Pharm Technol Res
                JAPTR
                J Adv Pharm Technol Res
                Journal of Advanced Pharmaceutical Technology & Research
                Wolters Kluwer - Medknow (India )
                2231-4040
                0976-2094
                Apr-Jun 2024
                06 May 2024
                : 15
                : 2
                : 75-80
                Affiliations
                [1]Department of Biology, Faculty of Engineering, Universitas Samudra, Langsa, Indonesia
                [1 ]Department of Physic, Faculty of Engineering, Universitas Samudra, Langsa, Indonesia
                [2 ]Department of Chemistry, Faculty of Engineering, Universitas Samudra, Langsa, Indonesia
                [3 ]Department of Chemistry, Faculty of Mathematical and Natural Science, Universitas Syiah Kuala, Banda Aceh, Indonesia
                [4 ]Research Center for Marine and Land Bioindustry, National Research and Innovation Agency (BRIN), Nort Lombok, Indonesia
                [5 ]Department of Mechanical, Faculty of Engineering, Universitas Syiah Kuala, Banda Aceh, Indonesia
                [6 ]Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Sumatera Utara, Medan, Indonesia
                Author notes
                Address for correspondence: Ms. Vivi Mardina, Department of Biology, Faculty of Engineering, Universitas Samudra, Langsa 24416, Aceh, Indonesia. E-mail: vmardina@ 123456unsam.ac.id
                Article
                JAPTR-15-75
                10.4103/japtr.japtr_410_23
                11186546
                38903547
                669364ac-32c9-45e9-a15a-0f65b51c3248
                Copyright: © 2024 Journal of Advanced Pharmaceutical Technology & Research

                This is an open access journal, and articles are distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.

                History
                : 21 August 2023
                : 30 January 2024
                : 31 December 2023
                Categories
                Original Article

                Pharmacology & Pharmaceutical medicine
                gold nanoparticle,green synthesis,invasive plant species,mcf-7,sphagneticola trilobata

                Comments

                Comment on this article

                Related Documents Log