22
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Different Natural Selection Pressures on the atpF Gene in Evergreen Sclerophyllous and Deciduous Oak Species: Evidence from Comparative Analysis of the Complete Chloroplast Genome of Quercus aquifolioides with Other Oak Species

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Quercus is an economically important and phylogenetically complex genus in the family Fagaceae. Due to extensive hybridization and introgression, it is considered to be one of the most challenging plant taxa, both taxonomically and phylogenetically. Quercus aquifolioides is an evergreen sclerophyllous oak species that is endemic to, but widely distributed across, the Hengduanshan Biodiversity Hotspot in the Eastern Himalayas. Here, we compared the fully assembled chloroplast (cp) genome of Q. aquifolioides with those of three closely related species. The analysis revealed a cp genome ranging in size from 160,415 to 161,304 bp and with a typical quadripartite structure, composed of two inverted repeats (IRs) separated by a small single copy (SSC) and a large single copy (LSC) region. The genome organization, gene number, gene order, and GC content of these four Quercus cp genomes are similar to those of many angiosperm cp genomes. We also analyzed the Q. aquifolioides repeats and microsatellites. Investigating the effects of selection events on shared protein-coding genes using the Ka/Ks ratio showed that significant positive selection had acted on the atpF gene of Q. aquifolioides compared to two deciduous oak species, and that there had been significant purifying selection on the atpF gene in the chloroplast of evergreen sclerophyllous oak trees. In addition, site-specific selection analysis identified positively selected sites in 12 genes. Phylogenetic analysis based on shared protein-coding genes from 14 species defined Q. aquifolioides as belonging to sect. Heterobalanus and being closely related to Q. rubra and Q. aliena. Our findings provide valuable genetic information for use in accurately identifying species, resolving taxonomy, and reconstructing the phylogeny of the genus Quercus.

          Related collections

          Most cited references47

          • Record: found
          • Abstract: found
          • Article: not found

          Exploiting EST databases for the development and characterization of gene-derived SSR-markers in barley (Hordeum vulgare L.).

          A software tool was developed for the identification of simple sequence repeats (SSRs) in a barley ( Hordeum vulgare L.) EST (expressed sequence tag) database comprising 24,595 sequences. In total, 1,856 SSR-containing sequences were identified. Trimeric SSR repeat motifs appeared to be the most abundant type. A subset of 311 primer pairs flanking SSR loci have been used for screening polymorphisms among six barley cultivars, being parents of three mapping populations. As a result, 76 EST-derived SSR-markers were integrated into a barley genetic consensus map. A correlation between polymorphism and the number of repeats was observed for SSRs built of dimeric up to tetrameric units. 3'-ESTs yielded a higher portion of polymorphic SSRs (64%) than 5'-ESTs did. The estimated PIC (polymorphic information content) value was 0.45 +/- 0.03. Approximately 80% of the SSR-markers amplified DNA fragments in Hordeum bulbosum, followed by rye, wheat (both about 60%) and rice (40%). A subset of 38 EST-derived SSR-markers comprising 114 alleles were used to investigate genetic diversity among 54 barley cultivars. In accordance with a previous, RFLP-based, study, spring and winter cultivars, as well as two- and six-rowed barleys, formed separate clades upon PCoA analysis. The results show that: (1) with the software tool developed, EST databases can be efficiently exploited for the development of cDNA-SSRs, (2) EST-derived SSRs are significantly less polymorphic than those derived from genomic regions, (3) a considerable portion of the developed SSRs can be transferred to related species, and (4) compared to RFLP-markers, cDNA-SSRs yield similar patterns of genetic diversity.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Highly Variable Chloroplast Markers for Evaluating Plant Phylogeny at Low Taxonomic Levels and for DNA Barcoding

            Background At present, plant molecular systematics and DNA barcoding techniques rely heavily on the use of chloroplast gene sequences. Because of the relatively low evolutionary rates of chloroplast genes, there are very few choices suitable for molecular studies on angiosperms at low taxonomic levels, and for DNA barcoding of species. Methodology/Principal Findings We scanned the entire chloroplast genomes of 12 genera to search for highly variable regions. The sequence data of 9 genera were from GenBank and 3 genera were of our own. We identified nearly 5% of the most variable loci from all variable loci in the chloroplast genomes of each genus, and then selected 23 loci that were present in at least three genera. The 23 loci included 4 coding regions, 2 introns, and 17 intergenic spacers. Of the 23 loci, the most variable (in order from highest variability to lowest) were intergenic regions ycf1-a, trnK, rpl32-trnL, and trnH-psbA, followed by trnSUGA-trnGUCC , petA-psbJ, rps16-trnQ, ndhC-trnV, ycf1-b, ndhF, rpoB-trnC, psbE-petL, and rbcL-accD. Three loci, trnSUGA-trnGUCC , trnT-psbD, and trnW-psaJ, showed very high nucleotide diversity per site (π values) across three genera. Other loci may have strong potential for resolving phylogenetic and species identification problems at the species level. The loci accD-psaI, rbcL-accD, rpl32-trnL, rps16-trnQ, and ycf1 are absent from some genera. To amplify and sequence the highly variable loci identified in this study, we designed primers from their conserved flanking regions. We tested the applicability of the primers to amplify target sequences in eight species representing basal angiosperms, monocots, eudicots, rosids, and asterids, and confirmed that the primers amplified the desired sequences of these species. Significance/Conclusions Chloroplast genome sequences contain regions that are highly variable. Such regions are the first consideration when screening the suitable loci to resolve closely related species or genera in phylogenetic analyses, and for DNA barcoding.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Using plastid genome-scale data to resolve enigmatic relationships among basal angiosperms.

              Although great progress has been made in clarifying deep-level angiosperm relationships, several early nodes in the angiosperm branch of the Tree of Life have proved difficult to resolve. Perhaps the last great question remaining in basal angiosperm phylogeny involves the branching order among the five major clades of mesangiosperms (Ceratophyllum, Chloranthaceae, eudicots, magnoliids, and monocots). Previous analyses have found no consistent support for relationships among these clades. In an effort to resolve these relationships, we performed phylogenetic analyses of 61 plastid genes ( approximately 42,000 bp) for 45 taxa, including members of all major basal angiosperm lineages. We also report the complete plastid genome sequence of Ceratophyllum demersum. Parsimony analyses of combined and partitioned data sets varied in the placement of several taxa, particularly Ceratophyllum, whereas maximum-likelihood (ML) trees were more topologically stable. Total evidence ML analyses recovered a clade of Chloranthaceae + magnoliids as sister to a well supported clade of monocots + (Ceratophyllum + eudicots). ML bootstrap and Bayesian support values for these relationships were generally high, although approximately unbiased topology tests could not reject several alternative topologies. The extremely short branches separating these five lineages imply a rapid diversification estimated to have occurred between 143.8 +/- 4.8 and 140.3 +/- 4.8 Mya.
                Bookmark

                Author and article information

                Journal
                Int J Mol Sci
                Int J Mol Sci
                ijms
                International Journal of Molecular Sciences
                MDPI
                1422-0067
                30 March 2018
                April 2018
                : 19
                : 4
                : 1042
                Affiliations
                College of Forestry, Beijing Forestry University, Beijing 100083, China; yinkq@ 123456im.ac.cn (K.Y.); zhangyue2016@ 123456bjfu.edu.cn (Y.Z.); liyuejuan@ 123456bjfu.edu.cn (Y.L.)
                Author notes
                [* ]Correspondence: dufang325@ 123456bjfu.edu.cn ; Tel.: +86-10-6233-8191
                Author information
                https://orcid.org/0000-0002-4627-6585
                Article
                ijms-19-01042
                10.3390/ijms19041042
                5979438
                29601535
                66b96246-ffe0-4c03-b19a-a0502ad7a884
                © 2018 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 23 February 2018
                : 27 March 2018
                Categories
                Article

                Molecular biology
                cp genome,repeat analysis,sequence divergence,non-synonymous substitution,electron transport chain,phylogeny

                Comments

                Comment on this article

                scite_

                Similar content282

                Cited by23

                Most referenced authors1,279