1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Novel mixed precursor approach to prepare multiferroic nanocomposites with enhanced interfacial coupling

      , , , , , ,
      Journal of Magnetism and Magnetic Materials
      Elsevier BV

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references20

          • Record: found
          • Abstract: found
          • Article: not found

          Recent progress in multiferroic magnetoelectric composites: from bulk to thin films.

          Multiferroic magnetoelectric composite systems such as ferromagnetic-ferroelectric heterostructures have recently attracted an ever-increasing interest and provoked a great number of research activities, driven by profound physics from coupling between ferroelectric and magnetic orders, as well as potential applications in novel multifunctional devices, such as sensors, transducers, memories, and spintronics. In this Review, we try to summarize what remarkable progress in multiferroic magnetoelectric composite systems has been achieved in most recent few years, with emphasis on thin films; and to describe unsolved issues and new device applications which can be controlled both electrically and magnetically. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Piezoelectric Properties of Lead Zirconate‐Lead Titanate Solid‐Solution Ceramics

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Scalable energy-efficient magnetoelectric spin–orbit logic

              Since the early 1980s, most electronics have relied on the use of complementary metal-oxide-semiconductor (CMOS) transistors. However, the principles of CMOS operation, involving a switchable semiconductor conductance controlled by an insulating gate, have remained largely unchanged, even as transistors are miniaturized to sizes of 10 nanometres. We investigated what dimensionally scalable logic technology beyond CMOS could provide improvements in efficiency and performance for von Neumann architectures and enable growth in emerging computing such as artifical intelligence. Such a computing technology needs to allow progressive miniaturization, reduce switching energy, improve device interconnection and provide a complete logic and memory family. Here we propose a scalable spintronic logic device that operates via spin-orbit transduction (the coupling of an electron's angular momentum with its linear momentum) combined with magnetoelectric switching. The device uses advanced quantum materials, especially correlated oxides and topological states of matter, for collective switching and detection. We describe progress in magnetoelectric switching and spin-orbit detection of state, and show that in comparison with CMOS technology our device has superior switching energy (by a factor of 10 to 30), lower switching voltage (by a factor of 5) and enhanced logic density (by a factor of 5). In addition, its non-volatility enables ultralow standby power, which is critical to modern computing. The properties of our device indicate that the proposed technology could enable the development of multi-generational computing.
                Bookmark

                Author and article information

                Journal
                Journal of Magnetism and Magnetic Materials
                Journal of Magnetism and Magnetic Materials
                Elsevier BV
                03048853
                October 2020
                October 2020
                : 511
                : 166792
                Article
                10.1016/j.jmmm.2020.166792
                66bdef55-06d3-462d-a9c9-b33d79d111e3
                © 2020

                https://www.elsevier.com/tdm/userlicense/1.0/

                http://creativecommons.org/licenses/by-nc-nd/4.0/

                History

                Comments

                Comment on this article