15
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Lifeguard Inhibits Fas Ligand-mediated Endoplasmic Reticulum-Calcium Release Mandatory for Apoptosis in Type II Apoptotic Cells.

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Death receptors are members of the tumor necrosis factor receptor superfamily involved in the extrinsic apoptotic pathway. Lifeguard (LFG) is a death receptor antagonist mainly expressed in the nervous system that specifically blocks Fas ligand (FasL)-induced apoptosis. To investigate its mechanism of action, we studied its subcellular localization and its interaction with members of the Bcl-2 family proteins. We performed an analysis of LFG subcellular localization in murine cortical neurons and found that LFG localizes mainly to the ER and Golgi. We confirmed these results with subcellular fractionation experiments. Moreover, we show by co-immunoprecipitation experiments that LFG interacts with Bcl-XL and Bcl-2, but not with Bax or Bak, and this interaction likely occurs in the endoplasmic reticulum. We further investigated the relationship between LFG and Bcl-XL in the inhibition of apoptosis and found that LFG protects only type II apoptotic cells from FasL-induced death in a Bcl-XL dependent manner. The observation that LFG itself is not located in mitochondria raises the question as to whether LFG in the ER participates in FasL-induced death. Indeed, we investigated the degree of calcium mobilization after FasL stimulation and found that LFG inhibits calcium release from the ER, a process that correlates with LFG blockage of cytochrome c release to the cytosol and caspase activation. On the basis of our observations, we propose that there is a required step in the induction of type II apoptotic cell death that involves calcium mobilization from the ER and that this step is modulated by LFG.

          Related collections

          Author and article information

          Journal
          J. Biol. Chem.
          The Journal of biological chemistry
          American Society for Biochemistry & Molecular Biology (ASBMB)
          1083-351X
          0021-9258
          Jan 15 2016
          : 291
          : 3
          Affiliations
          [1 ] From the Cell Signaling and Apoptosis Group and the Institut de Neurociències, Departament de Bioquímica i Biologia Molecular, Facultat de Medicina, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.
          [2 ] Laboratory of Experimental Cardiology, Institut de Recerca de l'Hospital Universitari de la Vall d'Hebron, 08035 Barcelona, Spain.
          [3 ] From the Cell Signaling and Apoptosis Group and.
          [4 ] the Department of Cell Biology and Pathology, Instituto de Neurociencias de Castilla y León, Universidad de Salamanca, Salamanca 37007, Spain, and the Institute of Biomedical Research of Salamanca, Salamanca 37007, Spain.
          [5 ] From the Cell Signaling and Apoptosis Group and the Institut de Neurociències, Departament de Bioquímica i Biologia Molecular, Facultat de Medicina, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain, bruna.barneda@vhir.org.
          [6 ] From the Cell Signaling and Apoptosis Group and the Institut de Neurociències, Departament de Bioquímica i Biologia Molecular, Facultat de Medicina, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain, joan.comella@vhir.org.
          Article
          M115.677682
          10.1074/jbc.M115.677682
          4714210
          26582200
          66bf8e8a-779b-4077-9546-01e57f06c61f
          History

          CD95 (APO-1/Fas),apoptosis,calcium,endoplasmic reticulum (ER),neuron

          Comments

          Comment on this article