292
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Extreme Temperatures and Mortality: Assessing Effect Modification by Personal Characteristics and Specific Cause of Death in a Multi-City Case-Only Analysis

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Extremes of temperature are associated with short-term increases in daily mortality.

          Objectives

          We set out to identify subpopulations and mortality causes with increased susceptibility to temperature extremes.

          Methods

          We conducted a case-only analysis using daily mortality and hourly weather data from 50 U.S. cities for the period 1989–2000, covering a total of 7,789,655 deaths. We used distributions of daily minimum and maximum temperature in each city to define extremely hot days (≥ 99th percentile) and extremely cold days (≤ 1st percentile), respectively. For each (hypothesized) effect modifier, a city-specific logistic regression model was fitted and an overall estimate calculated in a subsequent meta-analysis.

          Results

          Older subjects [odds ratio (OR) = 1.020; 95% confidence interval (CI), 1.005–1.034], diabetics (OR = 1.035; 95% CI, 1.010–1.062), blacks (OR = 1.037; 95% CI, 1.016–1.059), and those dying outside a hospital (OR = 1.066; 95% CI, 1.036–1.098) were more susceptible to extreme heat, with some differences observed between those dying from a cardiovascular disease and other decedents. Cardiovascular deaths (OR = 1.053; 95% CI, 1.036–1.070), and especially cardiac arrest deaths (OR =1.137; 95% CI, 1.051–1.230), showed a greater relative increase on extremely cold days, whereas the increase in heat-related mortality was marginally higher for those with coexisting atrial fibrillation (OR = 1.059; 95% CI, 0.996–1.125).

          Conclusions

          In this study we identified several subpopulations and mortality causes particularly susceptible to temperature extremes. This knowledge may contribute to establishing health programs that would better protect the vulnerable.

          Related collections

          Most cited references35

          • Record: found
          • Abstract: found
          • Article: not found

          Prevalence of diagnosed atrial fibrillation in adults: national implications for rhythm management and stroke prevention: the AnTicoagulation and Risk Factors in Atrial Fibrillation (ATRIA) Study.

          Atrial fibrillation is the most common arrhythmia in elderly persons and a potent risk factor for stroke. However, recent prevalence and projected future numbers of persons with atrial fibrillation are not well described. To estimate prevalence of atrial fibrillation and US national projections of the numbers of persons with atrial fibrillation through the year 2050. Cross-sectional study of adults aged 20 years or older who were enrolled in a large health maintenance organization in California and who had atrial fibrillation diagnosed between July 1, 1996, and December 31, 1997. Prevalence of atrial fibrillation in the study population of 1.89 million; projected number of persons in the United States with atrial fibrillation between 1995-2050. A total of 17 974 adults with diagnosed atrial fibrillation were identified during the study period; 45% were aged 75 years or older. The prevalence of atrial fibrillation was 0.95% (95% confidence interval, 0.94%-0.96%). Atrial fibrillation was more common in men than in women (1.1% vs 0.8%; P<.001). Prevalence increased from 0.1% among adults younger than 55 years to 9.0% in persons aged 80 years or older. Among persons aged 50 years or older, prevalence of atrial fibrillation was higher in whites than in blacks (2.2% vs 1.5%; P<.001). We estimate approximately 2.3 million US adults currently have atrial fibrillation. We project that this will increase to more than 5.6 million (lower bound, 5.0; upper bound, 6.3) by the year 2050, with more than 50% of affected individuals aged 80 years or older. Our study confirms that atrial fibrillation is common among older adults and provides a contemporary basis for estimates of prevalence in the United States. The number of patients with atrial fibrillation is likely to increase 2.5-fold during the next 50 years, reflecting the growing proportion of elderly individuals. Coordinated efforts are needed to face the increasing challenge of optimal stroke prevention and rhythm management in patients with atrial fibrillation.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Explaining heterogeneity in meta-analysis: a comparison of methods.

            Exploring the possible reasons for heterogeneity between studies is an important aspect of conducting a meta-analysis. This paper compares a number of methods which can be used to investigate whether a particular covariate, with a value defined for each study in the meta-analysis, explains any heterogeneity. The main example is from a meta-analysis of randomized trials of serum cholesterol reduction, in which the log-odds ratio for coronary events is related to the average extent of cholesterol reduction achieved in each trial. Different forms of weighted normal errors regression and random effects logistic regression are compared. These analyses quantify the extent to which heterogeneity is explained, as well as the effect of cholesterol reduction on the risk of coronary events. In a second example, the relationship between treatment effect estimates and their precision is examined, in order to assess the evidence for publication bias. We conclude that methods which allow for an additive component of residual heterogeneity should be used. In weighted regression, a restricted maximum likelihood estimator is appropriate, although a number of other estimators are also available. Methods which use the original form of the data explicitly, for example the binomial model for observed proportions rather than assuming normality of the log-odds ratios, are now computationally feasible. Although such methods are preferable in principle, they often give similar results in practice. Copyright 1999 John Wiley & Sons, Ltd.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The potential impacts of climate variability and change on temperature-related morbidity and mortality in the United States.

              Heat and heat waves are projected to increase in severity and frequency with increasing global mean temperatures. Studies in urban areas show an association between increases in mortality and increases in heat, measured by maximum or minimum temperature, heat index, and sometimes, other weather conditions. Health effects associated with exposure to extreme and prolonged heat appear to be related to environmental temperatures above those to which the population is accustomed. Models of weather-mortality relationships indicate that populations in northeastern and midwestern U.S. cities are likely to experience the greatest number of illnesses and deaths in response to changes in summer temperature. Physiologic and behavioral adaptations may reduce morbidity and mortality. Within heat-sensitive regions, urban populations are the most vulnerable to adverse heat-related health outcomes. The elderly, young children, the poor, and people who are bedridden or are on certain medications are at particular risk. Heat-related illnesses and deaths are largely preventable through behavioral adaptations, including the use of air conditioning and increased fluid intake. Overall death rates are higher in winter than in summer, and it is possible that milder winters could reduce deaths in winter months. However, the relationship between winter weather and mortality is difficult to interpret. Other adaptation measures include heat emergency plans, warning systems, and illness management plans. Research is needed to identify critical weather parameters, the associations between heat and nonfatal illnesses, the evaluation of implemented heat response plans, and the effectiveness of urban design in reducing heat retention.
                Bookmark

                Author and article information

                Journal
                Environ Health Perspect
                Environmental Health Perspectives
                National Institute of Environmental Health Sciences
                0091-6765
                September 2006
                6 July 2006
                : 114
                : 9
                : 1331-1336
                Affiliations
                [1 ] Department of Environmental Health and
                [2 ] Department of Epidemiology, Harvard School of Public Health, Boston, Massachusetts, USA
                Author notes
                Address correspondence to M. Medina-Ramón, Department of Environmental Health, Harvard School of Public Health, 401 Park Dr., Landmark Center, Suite 415-E West, Boston, MA 02215. Telephone: (617) 384-8742. Fax: (617) 384-8745. E-mail: mmedinar@ 123456hsph.harvard.edu

                The authors declare they have no competing financial interests.

                Article
                ehp0114-001331
                10.1289/ehp.9074
                1570054
                16966084
                66c476cf-ccab-43be-b34b-12d5547f6461
                This is an Open Access article: verbatim copying and redistribution of this article are permitted in all media for any purpose, provided this notice is preserved along with the article's original DOI
                History
                : 6 February 2006
                : 5 July 2006
                Categories
                Research

                Public health
                temperature,weather,effect modifiers (epidemiology),cause of death,cold,mortality,heat
                Public health
                temperature, weather, effect modifiers (epidemiology), cause of death, cold, mortality, heat

                Comments

                Comment on this article