105
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Transcriptional Profiling and Identification of Heat-Responsive Genes in Perennial Ryegrass by RNA-Sequencing

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Perennial ryegrass ( Lolium perenne) is one of the most widely used forage and turf grasses in the world due to its desirable agronomic qualities. However, as a cool-season perennial grass species, high temperature is a major factor limiting its performance in warmer and transition regions. In this study, a de novo transcriptome was generated using a cDNA library constructed from perennial ryegrass leaves subjected to short-term heat stress treatment. Then the expression profiling and identification of perennial ryegrass heat response genes by digital gene expression analyses was performed. The goal of this work was to produce expression profiles of high temperature stress responsive genes in perennial ryegrass leaves and further identify the potentially important candidate genes with altered levels of transcript, such as those genes involved in transcriptional regulation, antioxidant responses, plant hormones and signal transduction, and cellular metabolism. The de novo assembly of perennial ryegrass transcriptome in this study obtained more total and annotated unigenes compared to previously published ones. Many DEGs identified were genes that are known to respond to heat stress in plants, including HSFs, HSPs, and antioxidant related genes. In the meanwhile, we also identified four gene candidates mainly involved in C 4 carbon fixation, and one TOR gene. Their exact roles in plant heat stress response need to dissect further. This study would be important by providing the gene resources for improving heat stress tolerance in both perennial ryegrass and other cool-season perennial grass plants.

          Related collections

          Most cited references122

          • Record: found
          • Abstract: not found
          • Article: not found

          Heat tolerance in plants: An overview

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Cytokinins: activity, biosynthesis, and translocation.

            Cytokinins (CKs) play a crucial role in various phases of plant growth and development, but the basic molecular mechanisms of their biosynthesis and signal transduction only recently became clear. The progress was achieved by identifying a series of key genes encoding enzymes and proteins controlling critical steps in biosynthesis, translocation, and signaling. Basic schemes for CK homeostasis and root/shoot communication at the whole-plant level can now be devised. This review summarizes recent findings on the relationship between CK structural variation and activity, distinct features in CK biosynthesis between higher plants and Agrobacterium infected plants, CK translocation at whole-plant and cellular levels, and CKs as signaling molecules for nutrient status via root-shoot communication.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Physiological functions of thioredoxin and thioredoxin reductase.

              Thioredoxin, thioredoxin reductase and NADPH, the thioredoxin system, is ubiquitous from Archea to man. Thioredoxins, with a dithiol/disulfide active site (CGPC) are the major cellular protein disulfide reductases; they therefore also serve as electron donors for enzymes such as ribonucleotide reductases, thioredoxin peroxidases (peroxiredoxins) and methionine sulfoxide reductases. Glutaredoxins catalyze glutathione-disulfide oxidoreductions overlapping the functions of thioredoxins and using electrons from NADPH via glutathione reductase. Thioredoxin isoforms are present in most organisms and mitochondria have a separate thioredoxin system. Plants have chloroplast thioredoxins, which via ferredoxin-thioredoxin reductase regulates photosynthetic enzymes by light. Thioredoxins are critical for redox regulation of protein function and signaling via thiol redox control. A growing number of transcription factors including NF-kappaB or the Ref-1-dependent AP1 require thioredoxin reduction for DNA binding. The cytosolic mammalian thioredoxin, lack of which is embryonically lethal, has numerous functions in defense against oxidative stress, control of growth and apoptosis, but is also secreted and has co-cytokine and chemokine activities. Thioredoxin reductase is a specific dimeric 70-kDa flavoprotein in bacteria, fungi and plants with a redox active site disulfide/dithiol. In contrast, thioredoxin reductases of higher eukaryotes are larger (112-130 kDa), selenium-dependent dimeric flavoproteins with a broad substrate specificity that also reduce nondisulfide substrates such as hydroperoxides, vitamin C or selenite. All mammalian thioredoxin reductase isozymes are homologous to glutathione reductase and contain a conserved C-terminal elongation with a cysteine-selenocysteine sequence forming a redox-active selenenylsulfide/selenolthiol active site and are inhibited by goldthioglucose (aurothioglucose) and other clinically used drugs.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Plant Sci
                Front Plant Sci
                Front. Plant Sci.
                Frontiers in Plant Science
                Frontiers Media S.A.
                1664-462X
                21 June 2017
                2017
                : 8
                : 1032
                Affiliations
                [1] 1Department of Grassland Science, China Agricultural University Beijing, China
                [2] 2National Energy R&D Center for Biomass, China Agricultural University Beijing, China
                Author notes

                Edited by: Zhulong Chan, Huazhong Agricultural University, China

                Reviewed by: Man Zhou, University of Minnesota, United States; Sun Xinbo, Agricultural University of Hebei, China

                *Correspondence: Kehua Wang, kehwang@ 123456cau.edu.cn Wanjun Zhang, wjzhang@ 123456cau.edu.cn

                These authors have contributed equally to this work.

                This article was submitted to Plant Abiotic Stress, a section of the journal Frontiers in Plant Science

                Article
                10.3389/fpls.2017.01032
                5478880
                66ce8f7f-ad62-4f8c-b6ce-86a740f9e2a1
                Copyright © 2017 Wang, Liu, Tian, Huang, Shi, Dai and Zhang.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 03 March 2017
                : 29 May 2017
                Page count
                Figures: 6, Tables: 1, Equations: 0, References: 151, Pages: 15, Words: 0
                Funding
                Funded by: National Natural Science Foundation of China 10.13039/501100001809
                Award ID: 31472140
                Categories
                Plant Science
                Original Research

                Plant science & Botany
                transcriptional profiling,heat-responsive genes,hsps,perennial ryegrass
                Plant science & Botany
                transcriptional profiling, heat-responsive genes, hsps, perennial ryegrass

                Comments

                Comment on this article