22
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      Call for Papers: Green Renal Replacement Therapy: Caring for the Environment

      Submit here before July 31, 2024

      About Blood Purification: 3.0 Impact Factor I 5.6 CiteScore I 0.83 Scimago Journal & Country Rank (SJR)

      • Record: found
      • Abstract: found
      • Article: found

      Fluorescence Correlation Spectroscopy and Fluorescence Lifetime Imaging Microscopy

      review-article

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          With few and commercially available add-ons, both confocal and full-field fluorescence microscopes can be adapted to provide more information on the biological sample of interest. In this review we discuss the possibilities offered by two additional functionalities to fluorescence microscopes, fluorescence correlation spectroscopy (FCS) and fluorescence lifetime imaging mi croscopy (FLIM). FCS measurements at a single point in a sample allow kinetic and diffusion properties of fluorescently labeled molecules to be determined, as well as their concentration and aggregation state. Data from multiple points of the sample can be acquired using scanning-FCS, image correlation spectroscopy, and raster image correlation spectroscopy. These techniques cover phenomena with characteristic durations from sub-microsecond to second time scales. The power of FLIM lies in the fact that the measured fluorescent lifetime of a fluorophore is sensitive to the molecular environment of that fluorophore. FLIM is a robust means to quantify Förster resonance energy transfer and thus determine protein-protein interactions or protein conformational changes. In addition, FLIM is very valuable for functional imaging of ion concentrations in cells and tissues as it can be applied in heterogeneously labeled samples. In summary, FCS and FLIM allow information to be gathered beyond localization, including diffusional mobility, protein clustering and interactions, and molecular environment.

          Related collections

          Most cited references43

          • Record: found
          • Abstract: found
          • Article: not found

          Studying protein dynamics in living cells.

          Since the advent of the green fluorescent protein, the subcellular localization, mobility, transport routes and binding interactions of proteins can be studied in living cells. Live cell imaging, in combination with photobleaching, energy transfer or fluorescence correlation spectroscopy are providing unprecedented insights into the movement of proteins and their interactions with cellular components. Remarkably, these powerful techniques are accessible to non-specialists using commercially available microscope systems.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Imaging protein molecules using FRET and FLIM microscopy.

            Förster (or fluorescence) resonance energy transfer (FRET) and fluorescence lifetime imaging (FLIM) have moved center stage and are increasingly forming part of multifaceted imaging approaches. They are complementary methodologies that can be applied to advanced quantitative analyses. The widening application of FRET and FLIM has been driven by the availability of suitable fluorophores, increasingly sophisticated microscopy systems, methodologies to correct spectral bleed-through, and the ease with which FRET can be combined with other techniques. FRET and FLIM have recently found use in several applications: in the analysis of protein-protein interactions with high spatial and temporal specificity (e.g. clustering), in the study of conformational changes, in the analysis of binding sequences, and in applications such as high-throughput screening.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Fluorescence lifetime imaging microscopy: spatial resolution of biochemical processes in the cell.

              Fluorescence lifetime imaging microscopy (FLIM) is a technique in which the mean fluorescence lifetime of a chromophore is measured at each spatially resolvable element of a microscope image. The nanosecond excited-state lifetime is independent of probe concentration or light path length but dependent upon excited-state reactions such as fluorescence resonance energy transfer (FRET). These properties of fluorescence lifetimes allow exploration of the molecular environment of labelled macromolecules in the interior of cells. Imaging of fluorescence lifetimes enables biochemical reactions to be followed at each microscopically resolvable location within the cell.
                Bookmark

                Author and article information

                Journal
                NEE
                Nephron Exp Nephrol
                10.1159/issn.1660-2129
                Cardiorenal Medicine
                S. Karger AG
                978-3-8055-8074-8
                978-3-318-01315-3
                1660-2129
                2006
                March 2006
                13 March 2006
                : 103
                : 2
                : e41-e49
                Affiliations
                Departments of Medicine, Physiology and Biophysics, Division of Renal Diseases and Hypertension, University of Colorado Health Sciences Center, Denver, Colo., USA
                Article
                90615 Nephron Exp Nephrol 2006;103:e41–e49
                10.1159/000090615
                16543763
                66ced899-9a1f-4c56-8d53-e2f85a6b6bc1
                © 2006 S. Karger AG, Basel

                Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher. Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug. Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.

                History
                Page count
                Figures: 4, Tables: 1, References: 50, Pages: 1
                Categories
                Microscopic Imaging

                Cardiovascular Medicine,Nephrology
                Diffusion,Forster resonance energy transfer,Protein-protein interactions,Clustering,Functional imaging,Single molecule

                Comments

                Comment on this article